Visualization
The 24-cell consists of 24 octahedral cells. For visualization purposes, it is convenient that the octahedron has opposing parallel faces (a trait it shares with the cells of the tesseract and the 120-cell). One can stack octahedrons face to face in a straight line bent in the 4th direction into a great circle with a circumference of 6 cells. The cell locations lend themselves to a hyperspherical description. Pick an arbitrary cell and label it the "North Pole". Eight great circle meridians (two cells long) radiate out in 3 dimensions, converging at the 3rd "South Pole" cell. This skeleton accounts for 18 of the 24 cells (2 + 8*2). See the table below.
There is another related great circle in the 24-cell, the dual of the one above. A path that traverses 6 vertices solely along edges, resides in the dual of this polytope, which is itself since it is self dual. One can easily follow this path in a rendering of the equatorial cuboctahedron cross-section. One can also follow a great circle route, through the octahedrons' opposing vertices, that is four cells long. This corresponds to traversing diagonally through the squares in the cuboctahedron cross-section. The 24-cell is the only regular polytope in more than two dimensions where you can traverse a great circle purely through opposing vertices (and the interior) of each cell. This great circle is self dual.
Starting at the North Pole, we can build up the 24-cell in 5 latitudinal layers. With the exception of the poles, each layer represents a separate 2-sphere, with the equator being a great 2-sphere. The cells labeled equatorial in the following table are interstitial to the meridian great circle cells. The interstitial "equatorial" cells touch the meridian cells at their faces. They touch each other, and the pole cells at their vertices. This latter subset of eight non-meridian and pole cells has the same relative position to each other as the cells in a tesseract (8-cell), although they touch at their vertices instead of their faces.
Layer # | Number of Cells | Description | Colatitude | Region |
---|---|---|---|---|
1 | 1 cell | North Pole | 0° | Northern Hemisphere |
2 | 8 cells | First layer of meridian cells | 60° | |
3 | 6 cells | Non-meridian / interstitial | 90° | Equator |
4 | 8 cells | Second layer of meridian cells | 120° | Southern Hemisphere |
5 | 1 cell | South Pole | 180° | |
Total | 24 cells |
The 24-cell can be partitioned into disjoint sets of four of these 6-cell great circle rings, forming a discrete Hopf fibration of four interlocking rings. One ring is "vertical", encompassing the pole cells and four meridian cells. The other three rings each encompass two equatorial cells and four meridian cells, two from the northern hemisphere and two from the southern.
Read more about this topic: 24-cell