90377 Sedna - Physical Characteristics

Physical Characteristics

Sedna has a V-band absolute magnitude (H) of about 1.8, and it is estimated to have an albedo of about 0.32, thus giving it a diameter of approximately 1,000 km. At the time of its discovery it was the intrinsically brightest object found in the Solar System since Pluto in 1930. In 2004, the discoverers placed an upper limit of 1,800 km on its diameter, but by 2007 this was revised downward to less than 1,600 km after observation by the Spitzer Space Telescope. In 2012, measurements from the Herschel Space Observatory suggested that Sedna's diameter was 995 ± 80 km, which would make it smaller than Pluto's moon Charon. As Sedna has no known moons, determining its mass is currently impossible without sending a space probe. However, if the above estimates for its diameter are coupled with Pluto's density of 2.0 g/cm3, the resultant estimated mass range is about 1 × 1021 kg.

Observations from the SMARTS telescope show that in visible light Sedna is one of the reddest objects in the Solar System, nearly as red as Mars. Chad Trujillo and his colleagues suggest that Sedna's dark red colour is caused by a surface coating of hydrocarbon sludge, or tholin, formed from simpler organic compounds after long exposure to ultraviolet radiation. Its surface is homogeneous in colour and spectrum; this may be because Sedna, unlike objects nearer the Sun, is rarely impacted by other bodies, which would expose bright patches of fresh icy material like that on 8405 Asbolus. Sedna and two other very distant objects ((87269) 2000 OO67 and 2006 SQ372) share their colour with outer classical Kuiper belt objects and the centaur 5145 Pholus, suggesting a similar region of origin.

Trujillo and colleagues have placed upper limits in Sedna's surface composition of 60% for methane ice and 70% for water ice. The presence of methane further supports the existence of tholins on Sedna's surface, as they are produced by irradiation of methane. Barucci and colleagues compared Sedna's spectrum with that of Triton and detected weak absorption bands belonging to methane and nitrogen ices. From these observations, they suggested the following model of the surface: 24% Triton-type tholins, 7% amorphous carbon, 10% nitrogen, 26% methanol and 33% methane. The detection of methane and water ices was confirmed in 2006 by Spitzer Space Telescope mid-infrared photometry. The presence of nitrogen on the surface suggests the possibility that, at least for a short time, Sedna may possess an atmosphere. During a 200-year period near perihelion the maximum temperature on Sedna should exceed 35.6 K (−237.6 °C), the transition temperature between alpha-phase solid N2 and the beta phase seen on Triton. At 38 K the N2 vapor pressure would be 14 microbar (0.000014 Atmospheres). However, its deep red spectral slope is indicative of high concentrations of organic material on its surface, and its weak methane absorption bands indicate that methane on Sedna's surface is ancient, rather than freshly deposited. This means that Sedna is too cold for methane to evaporate from its surface and then fall back as snow, as happens on Triton and probably on Pluto.

Models of internal heating via radioactive decay suggest that Sedna might be capable of supporting a subsurface ocean of liquid water.

Read more about this topic:  90377 Sedna

Famous quotes containing the word physical:

    Not too many years ago, a child’s experience was limited by how far he or she could ride a bicycle or by the physical boundaries that parents set. Today ... the real boundaries of a child’s life are set more by the number of available cable channels and videotapes, by the simulated reality of videogames, by the number of megabytes of memory in the home computer. Now kids can go anywhere, as long as they stay inside the electronic bubble.
    Richard Louv (20th century)