Additive Synthesis - History

History

Harmonic analyzer Tone-generator utilizing it

Harmonic analysis was discovered by Joseph Fourier, who published an extensive treatise of his research in the context of heat transfer in 1822. The theory found an early application in prediction of tides. Around 1876, Lord Kelvin constructed a mechanical tide predictor. It consisted of a harmonic analyzer and a harmonic synthesizer, as they were called already in the 19th century. The analysis of tide measurements was done using James Thomson's integrating machine. The resulting Fourier coefficients were input into the synthesizer, which then used a system of cords and pulleys to generate and sum harmonic sinusoidal partials for prediction of future tides. In 1910, a similar machine was built for the analysis of periodic waveforms of sound. The synthesizer drew a graph of the combination waveform, which was used chiefly for visual validation of the analysis.

Georg Ohm applied Fourier's theory to sound in 1843. The line of work was greatly advanced by Hermann von Helmholtz, who published his eight years worth of research in 1863. Helmholtz believed that the psychological perception of tone color is subject to learning, while hearing in the sensory sense is purely physiological. He supported the idea that perception of sound derives from signals from nerve cells of the basilar membrane and that the elastic appendages of these cells are sympathetically vibrated by pure sinusoidal tones of appropriate frequencies. Helmholtz agreed with the finding of Ernst Chladni from 1787 that certain sound sources have inharmonic vibration modes.

sound analyzer

In Helmholtz's time, electronic amplification was unavailable. For synthesis of tones with harmonic partials, Helmholtz built an electrically excited array of tuning forks and acoustic resonance chambers that allowed adjustment of the amplitudes of the partials. Built at least as early as in 1862, these were in turn refined by Rudolph Koenig, who demonstrated his own setup in 1872. For harmonic synthesis, Koenig also built a large apparatus based on his wave siren. It was pneumatic and utilized cut-out tonewheels, and was criticized for low purity of its partial tones. Also tibia pipes of pipe organs have nearly sinusoidal waveforms and can be combined in the manner of additive synthesis.

In 1938, with significant new supporting evidence, it was reported on the pages of Popular Science Monthly that the human vocal cords function like a fire siren to produce a harmonic-rich tone, which is then filtered by the vocal tract to produce different vowel tones. By the time, the additive Hammond organ was already on market. Most early electronic organ makers thought it too expensive to manufacture the plurality of oscillators required by additive organs, and began instead to built subtractive ones. In a 1940 Institute of Radio Engineers meeting, the head field engineer of Hammond elaborated on the company's new Novachord as having a “subtractive system” in contrast to the original Hammond organ in which “the final tones were built up by combining sound waves”. Alan Douglas used the qualifiers additive and subtractive to describe different types of electronic organs in a 1948 paper presented to the Royal Musical Association. The contemporary wording additive synthesis and subtractive synthesis can be found in his 1957 book The electrical production of music, in which he categorically lists three methods of forming of musical tone-colours, in sections titled Additive synthesis, Subtractive synthesis, and Other forms of combinations.

A typical modern additive synthesizer produces its output as an electrical, analog signal, or as digital audio, such as in the case of software synthesizers, which became popular around year 2000.

Read more about this topic:  Additive Synthesis

Famous quotes containing the word history:

    The History of the world is not the theatre of happiness. Periods of happiness are blank pages in it, for they are periods of harmony—periods when the antithesis is in abeyance.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    We don’t know when our name came into being or how some distant ancestor acquired it. We don’t understand our name at all, we don’t know its history and yet we bear it with exalted fidelity, we merge with it, we like it, we are ridiculously proud of it as if we had thought it up ourselves in a moment of brilliant inspiration.
    Milan Kundera (b. 1929)