Adhesion - Surface Energy

Surface Energy

Surface energy is conventionally defined as the work that is required to build a unit area of a particular surface. Another way to view the surface energy is to relate it to the work required to cleave a bulk sample, creating two surfaces. If the new surfaces are identical, the surface energy γ of each surface is equal to half the work of cleavage, W: γ = (1/2)W11.

If the surfaces are unequal, the Young-Dupré equation applies: W12 = γ1 + γ2 – γ12, where γ1 and γ2 are the surface energies of the two new surfaces, and γ12 is the interfacial tension.

This methodology can also be used to discuss cleavage that happens in another medium: γ12 = (1/2)W121 = (1/2)W212. These two energy quantities refer to the energy that is needed to cleave one species into two pieces while it is contained in a medium of the other species. Likewise for a three species system: γ13 + γ23 – γ12 = W12 + W33 – W13 – W23 = W132, where W132 is the energy of cleaving species 1 from species 2 in a medium of species 3.

A basic understanding of the terminology of cleavage energy, surface energy, and surface tension is very helpful for understanding the physical state and the events that happen at a given surface, but as discussed below, the theory of these variables also yields some interesting effects that concern the practicality of adhesive surfaces in relation to their surroundings.

Read more about this topic:  Adhesion

Famous quotes containing the words surface and/or energy:

    I cannot but conclude the bulk of your natives to be the most pernicious race of little, odious vermin that Nature ever suffered to crawl upon the surface of the earth.
    Jonathan Swift (1667–1745)

    I rather think the cinema will die. Look at the energy being exerted to revive it—yesterday it was color, today three dimensions. I don’t give it forty years more. Witness the decline of conversation. Only the Irish have remained incomparable conversationalists, maybe because technical progress has passed them by.
    Orson Welles (1915–1984)