Affine Space - Relation To Projective Spaces

Relation To Projective Spaces

Affine spaces are subspaces of projective spaces: an affine plane can be obtained from any projective plane by removing a line and all the points on it, and conversely any affine plane can be used to construct a projective plane as a closure by adding a line at infinity whose points correspond to equivalence classes of parallel lines.

Further, transformations of projective space that preserve affine space (equivalently, that leave the hyperplane at infinity invariant as a set) yield transformations of affine space. Conversely, any affine linear transformation extends uniquely to a projective linear transformations, so the affine group is a subgroup of the projective group. For instance, Möbius transformations (transformations of the complex projective line, or Riemann sphere) are affine (transformations of the complex plane) if and only if they fix the point at infinity.

However, one cannot take the projectivization of an affine space, so projective spaces are not naturally quotients of affine spaces: one can only take the projectivization of a vector space, since the projective space is lines through a given point, and there is no distinguished point in an affine space. If one chooses a base point (as zero), then an affine space becomes a vector space, which one may then projectivize, but this requires a choice.

Read more about this topic:  Affine Space

Famous quotes containing the words relation to, relation and/or spaces:

    Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning “When” are much more numerous than those beginning “Where” of “If.” As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.
    William Harmon (b. 1938)

    The proper study of mankind is man in his relation to his deity.
    —D.H. (David Herbert)

    Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,—far as they were distant from us, so were they from one another,—nay, some were twice as far from each other as from us,—impressed us with a sense of the immensity of the ocean, the “unfruitful ocean,” as it has been called, and we could see what proportion man and his works bear to the globe.
    Henry David Thoreau (1817–1862)