Ambiguity - Mathematical Interpretation of Ambiguity

Mathematical Interpretation of Ambiguity

In mathematics and logic, ambiguity can be considered to be an underdetermined system (of equations or logic) – for example, leaves open what the value of X is – while its opposite is a self-contradiction, also called inconsistency, paradoxicalness, or oxymoron, in an overdetermined system – such as, which has no solution – see also underdetermination.

Logical ambiguity and self-contradiction is analogous to visual ambiguity and impossible objects, such as the Necker cube and impossible cube, or many of the drawings of M. C. Escher.

Read more about this topic:  Ambiguity

Famous quotes containing the words mathematical and/or ambiguity:

    An accurate charting of the American woman’s progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of time—but like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.
    Susan Faludi (20th century)

    There is no greater impediment to the advancement of knowledge than the ambiguity of words.
    Thomas Reid (1710–1769)