ASCII Control Characters
ASCII reserves the first 32 codes (numbers 0–31 decimal) for control characters: codes originally intended not to represent printable information, but rather to control devices (such as printers) that make use of ASCII, or to provide meta-information about data streams such as those stored on magnetic tape. For example, character 10 represents the "line feed" function (which causes a printer to advance its paper), and character 8 represents "backspace". RFC 2822 refers to control characters that do not include carriage return, line feed or white space as non-whitespace control characters. Except for the control characters that prescribe elementary line-oriented formatting, ASCII does not define any mechanism for describing the structure or appearance of text within a document. Other schemes, such as markup languages, address page and document layout and formatting.
The original ASCII standard used only short descriptive phrases for each control character. The ambiguity this caused was sometimes intentional (where a character would be used slightly differently on a terminal link than on a data stream) and sometimes accidental (such as what "delete" means).
Probably the most influential single device on the interpretation of these characters was the Teletype Model 33 ASR, which was a printing terminal with an available paper tape reader/punch option. Paper tape was a very popular medium for long-term program storage until the 1980s, less costly and in some ways less fragile than magnetic tape. In particular, the Teletype Model 33 machine assignments for codes 17 (Control-Q, DC1, also known as XON), 19 (Control-S, DC3, also known as XOFF), and 127 (Delete) became de facto standards. Because the keytop for the O key also showed a left-arrow symbol (from ASCII-1963, which had this character instead of underscore), a noncompliant use of code 15 (Control-O, Shift In) interpreted as "delete previous character" was also adopted by many early timesharing systems but eventually became neglected.
The use of Control-S (XOFF, an abbreviation for transmit off) as a "handshaking" signal warning a sender to stop transmission because of impending overflow, and Control-Q (XON, "transmit on") to resume sending, persists to this day in many systems as a manual output control technique. On some systems Control-S retains its meaning but Control-Q is replaced by a second Control-S to resume output.
Code 127 is officially named "delete" but the Teletype label was "rubout". Since the original standard did not give detailed interpretation for most control codes, interpretations of this code varied. The original Teletype meaning, and the intent of the standard, was to make it an ignored character, the same as NUL (all zeroes). This was useful specifically for paper tape, because punching the all-ones bit pattern on top of an existing mark would obliterate it. Tapes designed to be "hand edited" could even be produced with spaces of extra NULs (blank tape) so that a block of characters could be "rubbed out" and then replacements put into the empty space.
As video terminals began to replace printing ones, the value of the "rubout" character was lost. DEC systems, for example, interpreted "Delete" to mean "remove the character before the cursor" and this interpretation also became common in Unix systems. Most other systems used "Backspace" for that meaning and used "Delete" to mean "remove the character at the cursor". That latter interpretation is the most common now.
Many more of the control codes have been given meanings quite different from their original ones. The "escape" character (ESC, code 27), for example, was intended originally to allow sending other control characters as literals instead of invoking their meaning. This is the same meaning of "escape" encountered in URL encodings, C language strings, and other systems where certain characters have a reserved meaning. Over time this meaning has been co-opted and has eventually been changed. In modern use, an ESC sent to the terminal usually indicates the start of a command sequence, usually in the form of a so-called "ANSI escape code" (or, more properly, a "Control Sequence Introducer") beginning with ESC followed by a "[" (left-bracket) character. An ESC sent from the terminal is most often used as an out-of-band character used to terminate an operation, as in the TECO and vi text editors. In graphical user interface (GUI) and windowing systems, ESC generally causes an application to abort its current operation or to exit (terminate) altogether.
The inherent ambiguity of many control characters, combined with their historical usage, created problems when transferring "plain text" files between systems. The best example of this is the newline problem on various operating systems. Teletype machines required that a line of text be terminated with both "Carriage Return" (which moves the printhead to the beginning of the line) and "Line Feed" (which advances the paper one line without moving the printhead). The name "Carriage Return" comes from the fact that on a manual typewriter the carriage holding the paper moved while the position where the keys struck the ribbon remained stationary. The entire carriage had to be pushed (returned) to the right in order to position the left margin of the paper for the next line.
DEC operating systems (OS/8, RT-11, RSX-11, RSTS, TOPS-10, etc.) used both characters to mark the end of a line so that the console device (originally Teletype machines) would work. By the time so-called "glass TTYs" (later called CRTs or terminals) came along, the convention was so well established that backward compatibility necessitated continuing the convention. When Gary Kildall cloned RT-11 to create CP/M he followed established DEC convention. Until the introduction of PC-DOS in 1981, IBM had no hand in this because their 1970s operating systems used EBCDIC instead of ASCII and they were oriented toward punch-card input and line printer output on which the concept of "carriage return" was meaningless. IBM's PC-DOS (also marketed as MS-DOS by Microsoft) inherited the convention by virtue of being a clone of CP/M, and Windows inherited it from MS-DOS.
Unfortunately, requiring two characters to mark the end of a line introduces unnecessary complexity and questions as to how to interpret each character when encountered alone. To simplify matters, plain text files on Multics, Unix and Unix-like systems, and Amiga systems use line feed (LF) alone as a line terminator. The original Macintosh OS, on the other hand, used carriage return (CR) alone as a line terminator; however, since Apple replaced it with the Unix-based OS X operating system, they now use line feed (LF) as well.
Transmission of text over the Internet, for protocols as E-mail and the World Wide Web, uses both characters.
Operating systems such as some older DEC operating systems, along with CP/M, tracked file length only in units of disk blocks and used Control-Z (SUB) to mark the end of the actual text in the file. For this reason, EOF, or end-of-file, was used colloquially and conventionally as a three-letter acronym (TLA) for Control-Z instead of SUBstitute. For a variety of reasons, the end-of-text code, ETX aka Control-C, was inappropriate and using Z as the control code to end a file is analogous to it ending the alphabet, a very convenient mnemonic aid.
In C library and Unix conventions, the null character is used to terminate text strings; such null-terminated strings can be known in abbreviation as ASCIZ or ASCIIZ, where here Z stands for "zero".
Binary | Oct | Dec | Hex | Abbr | Name | |||
---|---|---|---|---|---|---|---|---|
000 0000 | 000 | 0 | 00 | NUL | ␀ | ^@ | \0 | Null character |
000 0001 | 001 | 1 | 01 | SOH | ␁ | ^A | Start of Header | |
000 0010 | 002 | 2 | 02 | STX | ␂ | ^B | Start of Text | |
000 0011 | 003 | 3 | 03 | ETX | ␃ | ^C | End of Text | |
000 0100 | 004 | 4 | 04 | EOT | ␄ | ^D | End of Transmission | |
000 0101 | 005 | 5 | 05 | ENQ | ␅ | ^E | Enquiry | |
000 0110 | 006 | 6 | 06 | ACK | ␆ | ^F | Acknowledgment | |
000 0111 | 007 | 7 | 07 | BEL | ␇ | ^G | \a | Bell |
000 1000 | 010 | 8 | 08 | BS | ␈ | ^H | \b | Backspace |
000 1001 | 011 | 9 | 09 | HT | ␉ | ^I | \t | Horizontal Tab |
000 1010 | 012 | 10 | 0A | LF | ␊ | ^J | \n | Line feed |
000 1011 | 013 | 11 | 0B | VT | ␋ | ^K | \v | Vertical Tab |
000 1100 | 014 | 12 | 0C | FF | ␌ | ^L | \f | Form feed |
000 1101 | 015 | 13 | 0D | CR | ␍ | ^M | \r | Carriage return |
000 1110 | 016 | 14 | 0E | SO | ␎ | ^N | Shift Out | |
000 1111 | 017 | 15 | 0F | SI | ␏ | ^O | Shift In | |
001 0000 | 020 | 16 | 10 | DLE | ␐ | ^P | Data Link Escape | |
001 0001 | 021 | 17 | 11 | DC1 | ␑ | ^Q | Device Control 1 (oft. XON) | |
001 0010 | 022 | 18 | 12 | DC2 | ␒ | ^R | Device Control 2 | |
001 0011 | 023 | 19 | 13 | DC3 | ␓ | ^S | Device Control 3 (oft. XOFF) | |
001 0100 | 024 | 20 | 14 | DC4 | ␔ | ^T | Device Control 4 | |
001 0101 | 025 | 21 | 15 | NAK | ␕ | ^U | Negative Acknowledgement | |
001 0110 | 026 | 22 | 16 | SYN | ␖ | ^V | Synchronous idle | |
001 0111 | 027 | 23 | 17 | ETB | ␗ | ^W | End of Transmission Block | |
001 1000 | 030 | 24 | 18 | CAN | ␘ | ^X | Cancel | |
001 1001 | 031 | 25 | 19 | EM | ␙ | ^Y | End of Medium | |
001 1010 | 032 | 26 | 1A | SUB | ␚ | ^Z | Substitute | |
001 1011 | 033 | 27 | 1B | ESC | ␛ | ^[ | \e | Escape |
001 1100 | 034 | 28 | 1C | FS | ␜ | ^\ | File Separator | |
001 1101 | 035 | 29 | 1D | GS | ␝ | ^] | Group Separator | |
001 1110 | 036 | 30 | 1E | RS | ␞ | ^^ | Record Separator | |
001 1111 | 037 | 31 | 1F | US | ␟ | ^_ | Unit Separator | |
111 1111 | 177 | 127 | 7F | DEL | ␡ | ^? | Delete |
Read more about this topic: ASCII
Famous quotes containing the words control and/or characters:
“The basic tool for the manipulation of reality is the manipulation of words. If you can control the meaning of words, you can control the people who must use the words.”
—Philip K. Dick (19281982)
“The naturalistic literature of this country has reached such a state that no family of characters is considered true to life which does not include at least two hypochondriacs, one sadist, and one old man who spills food down the front of his vest.”
—Robert Benchley (18891945)