Ascorbic Acid - Antioxidant Mechanism

Antioxidant Mechanism

As a mild reducing agent, ascorbic acid degrades upon exposure to air, converting the oxygen to water. The redox reaction is accelerated by the presence of metal ions and light. It can be oxidized by one electron to a radical state or doubly oxidized to the stable form called dehydroascorbic acid.

Ascorbate usually acts as an antioxidant. It typically reacts with oxidants of the reactive oxygen species, such as the hydroxyl radical formed from hydrogen peroxide. Such radicals are damaging to animals and plants at the molecular level due to their possible interaction with nucleic acids, proteins, and lipids. Sometimes these radicals initiate chain reactions. Ascorbate can terminate these chain radical reactions by electron transfer. Ascorbic acid is special because it can transfer a single electron, owing to the stability of its own radical ion called "semidehydroascorbate", dehydroascorbate. The net reaction is:

RO • + C6H7O6- → ROH + C6H6O6• -

The oxidized forms of ascorbate are relatively unreactive, and do not cause cellular damage.

However, being a good electron donor, excess ascorbate in the presence of free metal ions can not only promote but also initiate free radical reactions, thus making it a potentially dangerous pro-oxidative compound in certain metabolic contexts.

Read more about this topic:  Ascorbic Acid

Famous quotes containing the word mechanism:

    I’ve never known a Philadelphian who wasn’t a downright “character;” possibly a defense mechanism resulting from the dullness of their native habitat.
    Anita Loos (1888–1981)