Astronomical Unit - History

History

According to Archimedes in the Sandreckoner (2.1), Aristarchus of Samos estimated the distance to the Sun to be 10,000 times the Earth's radius (the true value is about 23,000). However, the book On the Sizes and Distances of the Sun and Moon, which has long been ascribed to Aristarchus, says that he calculated the distance to the sun to be between 18 and 20 times the distance to the Moon, whereas the true ratio is about 389.174. The latter estimate was based on the angle between the half moon and the Sun, which he estimated as 87° (the true value being close to 89.853°). Depending on the distance Van Helden assumes Aristarchus used for the distance to the Moon, his calculated distance to the Sun would fall between 380 and 1,520 Earth radii.

According to Eusebius of Caesarea in the Praeparatio Evangelica, Eratosthenes found the distance to the sun to be "σταδιων μυριαδας τετρακοσιας και οκτωκισμυριας" (literally "of stadia myriads 400 and 80000"). This has been translated either as 4,080,000 stadia (1903 translation by Edwin Hamilton Gifford), or as 804,000,000 stadia (edition of Édouard des Places, dated 1974-1991). Using the Greek stadium of 185 to 190 meters, the former translation comes to a far too low 755,000 km whereas the second translation comes to 148.7 to 152.8 million km (accurate within 2%). Hipparchus also gave an estimate of the distance of the Sun from the Earth, quoted by Pappus as equal to 490 Earth radii. According to the conjectural reconstructions of Noel Swerdlow and G. J. Toomer, this was derived from his assumption of a "least perceptible" solar parallax of 7 arc minutes.

A Chinese mathematical treatise, the Zhoubi suanjing (ca. 1st century BCE), shows how the distance to the Sun can be computed geometrically, using the different lengths of the noontime shadows observed at three places 1000 li apart and the assumption that the Earth is flat.

Solar
parallax
Earth
radii
Archimedes in Sandreckoner (3rd cent. BC) 40″ 10,000
Aristarchus in On Sizes (?) 380-1,520
Hipparchus (2nd cent. BC) 7′  490
Ptolemy (2nd cent.) 2′ 50″ 1,210
Godefroy Wendelin (1635) 15″ 14,000
Jeremiah Horrocks (1639) 15″ 14,000
Christiaan Huygens (1659) 8.6″ 24,000
Cassini & Richer (1672) 9½″ 21,700
Jérôme Lalande (1771) 8.6″ 24,000
Simon Newcomb (1895) 8.80″ 23,440
Arthur Hinks (1909) 8.807″ 23,420
H. Spencer Jones (1941) 8.790″ 23,466
modern 8.794143″ 23,455

In the 2nd century CE, Ptolemy estimated the mean distance of the Sun as 1,210 times the Earth radius. To determine this value, Ptolemy started by measuring the Moon's parallax, finding what amounted to a horizontal lunar parallax of 1° 26′, which was much too large. He then derived a maximum lunar distance of 64 1/6 Earth radii. Because of cancelling errors in his parallax figure, his theory of the Moon's orbit, and other factors, this figure was approximately correct. He then measured the apparent sizes of the Sun and the Moon and concluded that the apparent diameter of the Sun was equal to the apparent diameter of the Moon at the Moon's greatest distance, and from records of lunar eclipses, he estimated this apparent diameter, as well as the apparent diameter of the shadow cone of the Earth traversed by the Moon during a lunar eclipse. Given these data, the distance of the Sun from the Earth can be trigonometrically computed to be 1,210 Earth radii. This gives a ratio of solar to lunar distance of approximately 19, matching Aristarchus's figure. Although Ptolemy's procedure is theoretically workable, it is very sensitive to small changes in the data, so much so that changing a measurement by a few percent can make the solar distance infinite.

After Greek astronomy was transmitted to the medieval Islamic world, astronomers made some changes to Ptolemy's cosmological model, but did not greatly change his estimate of the Earth–Sun distance. For example, in his introduction to Ptolemaic astronomy, al-Farghānī gave a mean solar distance of 1,170 Earth radii, while in his zij, al-Battānī used a mean solar distance of 1,108 Earth radii. Subsequent astronomers, such as al-Bīrūnī, used similar values. Later in Europe, Copernicus and Tycho Brahe also used comparable figures (1,142 Earth radii and 1,150 Earth radii), and so Ptolemy's approximate Earth–Sun distance survived through the 16th century.

Johannes Kepler was the first to realize that Ptolemy's estimate must be significantly too low (according to Kepler, at least by a factor of three) in his Rudolphine Tables (1627). Kepler's laws of planetary motion allowed astronomers to calculate the relative distances of the planets from the Sun, and rekindled interest in measuring the absolute value for the Earth (which could then be applied to the other planets). The invention of the telescope allowed far more accurate measurements of angles than is possible with the naked eye. Flemish astronomer Godefroy Wendelin repeated Aristarchus' measurements in 1635, and found that Ptolemy's value was too low by a factor of at least eleven.

A somewhat more accurate estimate can be obtained by observing the transit of Venus. By measuring the transit in two different locations, one can accurately calculate the parallax of Venus and from the relative distance of the Earth and Venus from the Sun, the solar parallax α (which cannot be measured directly). Jeremiah Horrocks had attempted to produce an estimate based on his observation of the 1639 transit (published in 1662), giving a solar parallax of 15 arcseconds, similar to Wendelin's figure. The solar parallax is related to the Earth–Sun distance as measured in Earth radii by

The smaller the solar parallax, the greater the distance between the Sun and the Earth: a solar parallax of 15" is equivalent to an Earth–Sun distance of 13,750 Earth radii.

Christiaan Huygens believed the distance was even greater: by comparing the apparent sizes of Venus and Mars, he estimated a value of about 24,000 Earth radii, equivalent to a solar parallax of 8.6". Although Huygens' estimate is remarkably close to modern values, it is often discounted by historians of astronomy because of the many unproven (and incorrect) assumptions he had to make for his method to work; the accuracy of his value seems to based more on luck than good measurement, with his various errors cancelling each other out.

Jean Richer and Giovanni Domenico Cassini measured the parallax of Mars between Paris and Cayenne in French Guiana when Mars was at its closest to Earth in 1672. They arrived at a figure for the solar parallax of 9½", equivalent to an Earth–Sun distance of about 22,000 Earth radii. They were also the first astronomers to have access to an accurate and reliable value for the radius of the Earth, which had been measured by their colleague Jean Picard in 1669 as 3,269 thousand toises. Another colleague, Ole Rømer, discovered the finite speed of light in 1676: the speed was so great that it was usually quoted as the time required for light to travel from the Sun to the Earth, or "light time per unit distance", a convention that is still followed by astronomers today.

A better method for observing Venus transits was devised by James Gregory and published in his Optica Promata (1663). It was strongly advocated by Edmond Halley and was applied to the transits of Venus observed in 1761 and 1769, and then again in 1874 and 1882. Transits of Venus occur in pairs, but less than one pair every century, and observing the transits in 1761 and 1769 was an unprecedented international scientific operation. Despite the Seven Years' War, dozens of astronomers were dispatched to observing points around the world at great expense and personal danger: several of them died in the endeavour. The various results were collated by Jérôme Lalande to give a figure for the solar parallax of 8.6″.

Date Method A/Gm Uncertainty
1895 aberration 149.25 0.12
1941 parallax 149.674 0.016
1964 radar 149.5981 0.001
1976 telemetry 149.597 870 0.000 001
2009 telemetry 149.597 870 700 0.000 000 003

Another method involved determining the constant of aberration, and Simon Newcomb gave great weight to this method when deriving his widely accepted value of 8.80″ for the solar parallax (close to the modern value of 8.794143″), although Newcomb also used data from the transits of Venus. Newcomb also collaborated with A. A. Michelson to measure the speed of light with Earth-based equipment; combined with the constant of aberration (which is related to the light time per unit distance) this gave the first direct measurement of the Earth–Sun distance in kilometers. Newcomb's value for the solar parallax (and for the constant of aberration and the Gaussian gravitational constant) were incorporated into the first international system of astronomical constants in 1896, which remained in place for the calculation of ephemerides until 1964. The name "astronomical unit" appears first to have been used in 1903.

The discovery of the near-Earth asteroid 433 Eros and its passage near the Earth in 1900–1901 allowed a considerable improvement in parallax measurement. Another international project to measure the parallax of 433 Eros was undertaken in 1930–1931.

Direct radar measurements of the distances to Venus and Mars became available in the early 1960s. Along with improved measurements of the speed of light, these showed that Newcomb's values for the solar parallax and the constant of aberration were inconsistent with one another.

Read more about this topic:  Astronomical Unit

Famous quotes containing the word history:

    We don’t know when our name came into being or how some distant ancestor acquired it. We don’t understand our name at all, we don’t know its history and yet we bear it with exalted fidelity, we merge with it, we like it, we are ridiculously proud of it as if we had thought it up ourselves in a moment of brilliant inspiration.
    Milan Kundera (b. 1929)

    The greatest honor history can bestow is that of peacemaker.
    Richard M. Nixon (1913–1995)

    The awareness that health is dependent upon habits that we control makes us the first generation in history that to a large extent determines its own destiny.
    Jimmy Carter (James Earl Carter, Jr.)