Solutions To Variational Problems
Several measures of central tendency can be characterized as solving a variational problem, in the sense of the calculus of variations, namely minimizing variation from the center. That is, given a measure of statistical dispersion, one asks for a measure of central tendency that minimizes variation: such that variation from the center is minimal among all choices of center. In a quip, "dispersion precedes location". In the sense of Lp spaces, the correspondence is:
Lp | dispersion | central tendency |
---|---|---|
L1 | average absolute deviation | median |
L2 | standard deviation | mean |
L∞ | maximum deviation | midrange |
Thus standard deviation about the mean is lower than standard deviation about any other point, and the maximum deviation about the midrange is lower than the maximum deviation about any other point. The uniqueness of this characterization of mean follows from convex optimization. Indeed, for a given (fixed) data set x, the function
represents the dispersion about a constant value c relative to the L2 norm. Because the function ƒ2 is a strictly convex coercive function, the minimizer exists and is unique.
Note that the median in this sense is not in general unique, and in fact any point between the two central points of a discrete distribution minimizes average absolute deviation. The dispersion in the L1 norm, given by
is not strictly convex, whereas strict convexity is needed to ensure uniqueness of the minimizer. In spite of this, the minimizer is unique for the L∞ norm.
Read more about this topic: Average
Famous quotes containing the words solutions to, solutions and/or problems:
“Those great ideas which come to you in your sleep just before you awake in morning, those solutions to the worlds problems which, in the light of day, turn out to be duds of the puniest order, couldnt they be put to some use, after all?”
—Robert Benchley (18891945)
“Football strategy does not originate in a scrimmage: it is useless to expect solutions in a political compaign.”
—Walter Lippmann (18891974)
“All problems are finally scientific problems.”
—George Bernard Shaw (18561950)