Examples
Here K denotes the field of real numbers or complex numbers, I is a closed and bounded interval and p, q are real numbers with 1 < p, q < ∞ so that
- .
The symbol Σ denotes a σ-algebra of sets, and Ξ denotes just an algebra of sets (for spaces only requiring finite additivity, such as the ba space). The symbol μ denotes a positive measure: that is, a real-valued positive set function defined on a σ-algebra which is countably additive.
Classical Banach spaces | |||||
Dual space | Reflexive | weakly complete | Norm | Notes | |
---|---|---|---|---|---|
Kn | Kn | Yes | Yes | ||
ℓnp | ℓnq | Yes | Yes | ||
ℓn∞ | ℓn1 | Yes | Yes | ||
ℓp | ℓq | Yes | Yes | ||
ℓ1 | ℓ∞ | No | Yes | ||
ℓ∞ | ba | No | No | ||
c | ℓ1 | No | No | ||
c0 | ℓ1 | No | No | Isomorphic but not isometric to c. | |
bv | ℓ1 + K | No | Yes | ||
bv0 | ℓ1 | No | Yes | ||
bs | ba | No | No | Isometrically isomorphic to ℓ∞. | |
cs | ℓ1 | No | No | Isometrically isomorphic to c. | |
B(X, Ξ) | ba(Ξ) | No | No | ||
C(X) | rca(X) | No | No | X is a compact Hausdorff space. | |
ba(Ξ) | ? | No | Yes |
(variation of a measure) |
|
ca(Σ) | ? | No | Yes | A closed subspace of ba(Σ). | |
rca(Σ) | ? | No | Yes | A closed subspace of ca(Σ). | |
Lp(μ) | Lq(μ) | Yes | Yes | ||
BV(I) | ? | No | Yes | Vf(I) is the total variation of f. | |
NBV(I) | ? | No | Yes | NBV(I) consists of BV functions such that . | |
AC(I) | K+L∞(I) | No | Yes | Isomorphic to the Sobolev space W1,1(I). | |
Cn | rca | No | No | Isomorphic to Rn ⊕ C, essentially by Taylor's theorem. |
Read more about this topic: Banach Space
Famous quotes containing the word examples:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (1670–1733)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (1896–1966)