Generalizations and Related Usages
The generalization to functions taking values in any normed vector space is straightforward (replacing absolute values by norms), where f and g need not take their values in the same space. A generalization to functions g taking values in any topological group is also possible. The "limiting process" x→xo can also be generalized by introducing an arbitrary filter base, i.e. to directed nets f and g. The o notation can be used to define derivatives and differentiability in quite general spaces, and also (asymptotical) equivalence of functions,
which is an equivalence relation and a more restrictive notion than the relationship "f is Θ(g)" from above. (It reduces to if f and g are positive real valued functions.) For example, 2x is Θ(x), but 2x − x is not o(x).
Read more about this topic: Big O Notation
Famous quotes containing the word related:
“A parent who from his own childhood experience is convinced of the value of fairy tales will have no difficulty in answering his childs questions; but an adult who thinks these tales are only a bunch of lies had better not try telling them; he wont be able to related them in a way which would enrich the childs life.”
—Bruno Bettelheim (20th century)