Examples
- Matrix multiplication is a bilinear map M(m,n) × M(n,p) → M(m,p).
- If a vector space V over the real numbers R carries an inner product, then the inner product is a bilinear map V × V → R.
- In general, for a vector space V over a field F, a bilinear form on V is the same as a bilinear map V × V → F.
- If V is a vector space with dual space V*, then the application operator, b(f, v) = f(v) is a bilinear map from V* × V to the base field.
- Let V and W be vector spaces over the same base field F. If f is a member of V* and g a member of W*, then b(v, w) = f(v)g(w) defines a bilinear map V × W → F.
- The cross product in R3 is a bilinear map R3 × R3 → R3.
- Let B : V × W → X be a bilinear map, and L : U → W be a linear map, then (v, u) ↦ B(v, Lu) is a bilinear map on V × U.
- The null map, defined by B(v,w) = 0 for all (v,w) in V × W is the only map from V × W to X which is bilinear and linear at the same time. Indeed, if (v,w) ∈ V × W, then if B is linear, B(v,w) = B(v,0) + B(0,w) = 0 + 0 if B is bilinear.
Read more about this topic: Bilinear Map
Famous quotes containing the word examples:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)