Binary Function - Generalisations

Generalisations

The various concepts relating to functions can also be generalised to binary functions. For example, the division example above is surjective (or onto) because every rational number may be expressed as a quotient of an integer and a natural number. This example is injective in each input separately, because the functions f x and f y are always injective. However, it's not injective in both variables simultaneously, because (for example) f (2,4) = f (1,2).

One can also consider partial binary functions, which may be defined only for certain values of the inputs. For example, the division example above may also be interpreted as a partial binary function from Z and N to Q, where N is the set of all natural numbers, including zero. But this function is undefined when the second input is zero.

A binary operation is a binary function where the sets X, Y, and Z are all equal; binary operations are often used to define algebraic structures.

In linear algebra, a bilinear transformation is a binary function where the sets X, Y, and Z are all vector spaces and the derived functions f x and fy are all linear transformations. A bilinear transformation, like any binary function, can be interpreted as a function from X × Y to Z, but this function in general won't be linear. However, the bilinear transformation can also be interpreted as a single linear transformation from the tensor product to Z.

Read more about this topic:  Binary Function