Formal Definition
A binary relation R is usually defined as an ordered triple (X, Y, G) where X and Y are arbitrary sets (or classes), and G is a subset of the Cartesian product X × Y. The sets X and Y are called the domain (or the set of departure) and codomain (or the set of destination), respectively, of the relation, and G is called its graph.
The statement (x,y) ∈ R is read "x is R-related to y", and is denoted by xRy or R(x,y). The latter notation corresponds to viewing R as the characteristic function on "X" x "Y" for the set of pairs of G.
The order of the elements in each pair of G is important: if a ≠ b, then aRb and bRa can be true or false, independently of each other.
A relation as defined by the triple (X, Y, G) is sometimes referred to as a correspondence instead. In this case the relation from X to Y is the subset G of X×Y, and "from X to Y" must always be either specified or implied by the context when referring to the relation. In practice correspondence and relation tend to be used interchangeably.
Read more about this topic: Binary Relation
Famous quotes containing the words formal and/or definition:
“The manifestation of poetry in external life is formal perfection. True sentiment grows within, and art must represent internal phenomena externally.”
—Franz Grillparzer (17911872)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)