Three Dimensions
In three dimensions the geometric product of two vectors is
This can be split into the symmetric, scalar valued, interior product and the antisymmetric, bivector valued, exterior product:
In three dimensions all bivectors are simple and so the result of an exterior product. The unit bivectors e23, e31 and e12 form a basis for the space of bivectors Λ2ℝ3, which itself a three dimensional linear space. So if a general bivector is:
they can be added like vectors
while when multiplied they produce the following
which can be split into symmetric scalar and antisymmetric bivector parts as follows
The exterior product of two bivectors in three dimensions is zero.
A bivector B can be written as the product of its magnitude and a unit bivector, so writing β for |B| and using the Taylor series for the exponential map it can be shown that
This is another version of Euler's formula, but with a general bivector in three dimensions. Unlike in two dimensions bivectors are not commutative so properties that depend on commutativity do not apply in three dimensions. For example in general eA + B ≠ eAeB in three (or more) dimensions.
The full geometric algebra in three dimensions, Cℓ3(ℝ), has basis (1, e1, e2, e3, e23, e31, e12, e123). The element e123 is a trivector and the pseudoscalar for the geometry. Bivectors in three dimensions are sometimes identified with pseudovectors to which they are related, as discussed below.
Read more about this topic: Bivector
Famous quotes containing the word dimensions:
“I was surprised by Joes asking me how far it was to the Moosehorn. He was pretty well acquainted with this stream, but he had noticed that I was curious about distances, and had several maps. He and Indians generally, with whom I have talked, are not able to describe dimensions or distances in our measures with any accuracy. He could tell, perhaps, at what time we should arrive, but not how far it was.”
—Henry David Thoreau (18171862)
“Words are finite organs of the infinite mind. They cannot cover the dimensions of what is in truth. They break, chop, and impoverish it.”
—Ralph Waldo Emerson (18031882)