Definition
A Boolean algebra is a six-tuple consisting of a set A, equipped with two binary operations ∧ (called "meet" or "and"), ∨ (called "join" or "or"), a unary operation ¬ (called "complement" or "not") and two elements 0 and 1 (sometimes denoted by the symbols ⊥ and ⊤, respectively), such that for all elements a, b and c of A, the following axioms hold:
-
-
a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c associativity a ∨ b = b ∨ a a ∧ b = b ∧ a commutativity a ∨ 0 = a a ∧ 1 = a identity a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) distributivity a ∨ ¬a = 1 a ∧ ¬a = 0 complements
-
A Boolean algebra with only one element is called a trivial Boolean algebra or a degenerate Boolean algebra. (Some authors require 0 and 1 to be distinct elements in order to exclude this case.)
It follows from the last three pairs of axioms above (identity, distributivity and complements) that
-
- a = b ∧ a if and only if a ∨ b = b.
The relation ≤ defined by a ≤ b if and only if the above equivalent conditions hold, is a partial order with least element 0 and greatest element 1. The meet a ∧ b and the join a ∨ b of two elements coincide with their infimum and supremum, respectively, with respect to ≤.
As in every bounded lattice, the relations ∧ and ∨ satisfy the first three pairs of axioms above; the fourth pair is just distributivity. Since the complements in a distributive lattice are unique, to define the involution ¬ it suffices to define ¬a as the complement of a.
The set of axioms is self-dual in the sense that if one exchanges ∨ with ∧ and 0 with 1 in an axiom, the result is again an axiom. Therefore by applying this operation to a Boolean algebra (or Boolean lattice), one obtains another Boolean algebra with the same elements; it is called its dual.
Read more about this topic: Boolean Algebra (structure)
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)