Brain - Development

Development

The brain does not simply grow, but rather develops in an intricately orchestrated sequence of stages. It changes in shape from a simple swelling at the front of the nerve cord in the earliest embryonic stages, to a complex array of areas and connections. Neurons are created in special zones that contain stem cells, and then migrate through the tissue to reach their ultimate locations. Once neurons have positioned themselves, their axons sprout and navigate through the brain, branching and extending as they go, until the tips reach their targets and form synaptic connections. In a number of parts of the nervous system, neurons and synapses are produced in excessive numbers during the early stages, and then the unneeded ones are pruned away.

For vertebrates, the early stages of neural development are similar across all species. As the embryo transforms from a round blob of cells into a wormlike structure, a narrow strip of ectoderm running along the midline of the back is induced to become the neural plate, the precursor of the nervous system. The neural plate folds inward to form the neural groove, and then the lips that line the groove merge to enclose the neural tube, a hollow cord of cells with a fluid-filled ventricle at the center. At the front end, the ventricles and cord swell to form three vesicles that are the precursors of the forebrain, midbrain, and hindbrain. At the next stage, the forebrain splits into two vesicles called the telencephalon (which will contain the cerebral cortex, basal ganglia, and related structures) and the diencephalon (which will contain the thalamus and hypothalamus). At about the same time, the hindbrain splits into the metencephalon (which will contain the cerebellum and pons) and the myelencephalon (which will contain the medulla oblongata). Each of these areas contains proliferative zones where neurons and glial cells are generated; the resulting cells then migrate, sometimes for long distances, to their final positions.

Once a neuron is in place, it extends dendrites and an axon into the area around it. Axons, because they commonly extend a great distance from the cell body and need to reach specific targets, grow in a particularly complex way. The tip of a growing axon consists of a blob of protoplasm called a growth cone, studded with chemical receptors. These receptors sense the local environment, causing the growth cone to be attracted or repelled by various cellular elements, and thus to be pulled in a particular direction at each point along its path. The result of this pathfinding process is that the growth cone navigates through the brain until it reaches its destination area, where other chemical cues cause it to begin generating synapses. Considering the entire brain, thousands of genes create products that influence axonal pathfinding.

The synaptic network that finally emerges is only partly determined by genes, though. In many parts of the brain, axons initially "overgrow", and then are "pruned" by mechanisms that depend on neural activity. In the projection from the eye to the midbrain, for example, the structure in the adult contains a very precise mapping, connecting each point on the surface of the retina to a corresponding point in a midbrain layer. In the first stages of development, each axon from the retina is guided to the right general vicinity in the midbrain by chemical cues, but then branches very profusely and makes initial contact with a wide swath of midbrain neurons. The retina, before birth, contains special mechanisms that cause it to generate waves of activity that originate spontaneously at a random point and then propagate slowly across the retinal layer. These waves are useful because they cause neighboring neurons to be active at the same time; that is, they produce a neural activity pattern that contains information about the spatial arrangement of the neurons. This information is exploited in the midbrain by a mechanism that causes synapses to weaken, and eventually vanish, if activity in an axon is not followed by activity of the target cell. The result of this sophisticated process is a gradual tuning and tightening of the map, leaving it finally in its precise adult form.

Similar things happen in other brain areas: an initial synaptic matrix is generated as a result of genetically determined chemical guidance, but then gradually refined by activity-dependent mechanisms, partly driven by internal dynamics, partly by external sensory inputs. In some cases, as with the retina-midbrain system, activity patterns depend on mechanisms that operate only in the developing brain, and apparently exist solely to guide development.

In humans and many other mammals, new neurons are created mainly before birth, and the infant brain contains substantially more neurons than the adult brain. There are, however, a few areas where new neurons continue to be generated throughout life. The two areas for which adult neurogenesis is well established are the olfactory bulb, which is involved in the sense of smell, and the dentate gyrus of the hippocampus, where there is evidence that the new neurons play a role in storing newly acquired memories. With these exceptions, however, the set of neurons that is present in early childhood is the set that is present for life. Glial cells are different: as with most types of cells in the body, they are generated throughout the lifespan.

There has long been debate about whether the qualities of mind, personality, and intelligence can be attributed to heredity or to upbringingā€”this is the nature versus nurture controversy. Although many details remain to be settled, neuroscience research has clearly shown that both factors are important. Genes determine the general form of the brain, and genes determine how the brain reacts to experience. Experience, however, is required to refine the matrix of synaptic connections, which in its developed form contains far more information than the genome does. In some respects, all that matters is the presence or absence of experience during critical periods of development. In other respects, the quantity and quality of experience are important; for example, there is substantial evidence that animals raised in enriched environments have thicker cerebral cortices, indicating a higher density of synaptic connections, than animals whose levels of stimulation are restricted.

Read more about this topic:  Brain

Famous quotes containing the word development:

    I do seriously believe that if we can measure among the States the benefits resulting from the preservation of the Union, the rebellious States have the larger share. It destroyed an institution that was their destruction. It opened the way for a commercial life that, if they will only embrace it and face the light, means to them a development that shall rival the best attainments of the greatest of our States.
    Benjamin Harrison (1833–1901)

    Ultimately, it is the receiving of the child and hearing what he or she has to say that develops the child’s mind and personhood.... Parents who enter into a dialogue with their children, who draw out and respect their opinions, are more likely to have children whose intellectual and ethical development proceeds rapidly and surely.
    Mary Field Belenky (20th century)