Bromine - Biological Role

Biological Role

Bromine has no known essential role in human or mammalian health, but inorganic bromine and organobromine compounds do occur naturally, and some may be of use to higher organisms in dealing with parasites. For example, in the presence of H2O2 formed by the eosinophil, and either chloride or bromide ions, eosinophil peroxidase provides a potent mechanism by which eosinophils kill multicellular parasites (such as, for example, the nematode worms involved in filariasis); and also certain bacteria (such as tuberculosis bacteria). Eosinophil peroxidase is a haloperoxidase that preferentially uses bromide over chloride for this purpose, generating hypobromite (hypobromous acid).

Marine organisms are the main source of organobromine compounds. Over 1600 compounds were identified by 1999. The most abundant one is methyl bromide (CH3Br) with an estimated 56,000 tonnes produced by marine algae each year. The essential oil of the Hawaiian alga Asparagopsis taxiformis consists of 80% methyl bromide. Most of such organobromine compounds in the sea are made via the action of a unique algal enzyme, vanadium bromoperoxidase. Though this enzyme is the most prolific creator of organic bromides by living organisms, other bromoperoxidases exist in nature that do not use vanadium.

A famous example of a bromine-containing organic compound that has been used by humans since ancient times is the fabric dye Tyrian purple. The brominated indole indigo dye is produced by a medium-sized predatory sea snail, the marine gastropod Murex brandaris. The organobromine nature of the compound was not discovered until 1909 (see Paul Friedländer).

Read more about this topic:  Bromine

Famous quotes containing the words biological and/or role:

    Man’s biological weakness is the condition of human culture.
    Erich Fromm (1900–1980)

    The addition of a helpless, needy infant to a couple’s life limits freedom of movement, changes role expectancies, places physical demands on parents, and restricts spontaneity.
    Jerrold Lee Shapiro (20th century)