Production
The mining of pollucite ore is a selective process and is conducted on a small scale in comparison with most metal mining operations. The ore is crushed, hand-sorted, but not usually concentrated, and then ground. Caesium is then extracted from pollucite mainly by three methods: acid digestion, alkaline decomposition, and direct reduction.
In the acid digestion, the silicate pollucite rock is dissolved with strong acids such as hydrochloric (HCl), sulfuric (H2SO4), hydrobromic (HBr), or hydrofluoric (HF) acids. With hydrochloric acid, a mixture of soluble chlorides is produced, and the insoluble chloride double salts of caesium are precipitated as caesium antimony chloride (Cs4SbCl7), caesium iodine chloride (Cs2ICl), or caesium hexachlorocerate (Cs2(CeCl6)). After separation, the pure precipitated double salt is decomposed, and pure CsCl is obtained after evaporating the water. The method using sulfuric acid yields the insoluble double salt directly as caesium alum (CsAl(SO4)2·12H2O). The aluminium sulfate in it is converted to the insoluble aluminium oxide by roasting the alum with carbon, and the resulting product is leached with water to yield a Cs2SO4 solution.
The roasting of pollucite with calcium carbonate and calcium chloride yields insoluble calcium silicates and soluble caesium chloride. Leaching with water or dilute ammonia (NH4OH) yields then a dilute chloride (CsCl) solution. This solution can be evaporated to produce caesium chloride or transformed into caesium alum or caesium carbonate. Albeit not commercially feasible, direct reduction of the ore with potassium, sodium or calcium in vacuum can produce caesium metal directly.
Most of the mined caesium (as salts) is directly converted into caesium formate (HCOO−Cs+) for applications such as oil drilling. To supply the developing market, Cabot Corporation built a production plant in 1997 at the Tanco mine near Bernic Lake in Manitoba, with a capacity of 12,000 barrels (1,900 m3) per year of caesium formate solution. The primary smaller-scale commercial compounds of caesium are caesium chloride and its nitrate.
Alternatively, caesium metal may be obtained from the purified compounds derived from the ore. Caesium chloride, and the other caesium halides, as well, can be reduced at 700 to 800 °C (1,292 to 1,472 °F) with calcium or barium, followed by distillation of the caesium metal. In the same way, the aluminate, carbonate, or hydroxide may be reduced by magnesium. The metal can also be isolated by electrolysis of fused caesium cyanide (CsCN). Exceptionally pure and gas-free caesium can be made by the thermal decomposition at 390 °C (734 °F) of caesium azide CsN3, which is produced from aqueous caesium sulfate and barium azide. In vacuum applications, caesium dichromate can be reacted with zirconium forming pure caesium metal without other gaseous products.
- Cs2Cr2O7 + 2 Zr → 2 Cs + 2 ZrO2+ Cr2O3
The price of 99.8% pure caesium (metal basis) in 2009 was about US$10 per gram ($280 per ounce), but its compounds are significantly cheaper.
Read more about this topic: Caesium
Famous quotes containing the word production:
“The development of civilization and industry in general has always shown itself so active in the destruction of forests that everything that has been done for their conservation and production is completely insignificant in comparison.”
—Karl Marx (18181883)
“Perestroika basically is creating material incentives for the individual. Some of the comrades deny that, but I cant see it any other way. In that sense human nature kinda goes backwards. Its a step backwards. You have to realize the people werent quite ready for a socialist production system.”
—Gus Hall (b. 1910)
“The society based on production is only productive, not creative.”
—Albert Camus (19131960)