In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the extent possible.
Historically, this was not quite Werner Heisenberg's route to obtaining quantum mechanics, but Paul Dirac introduced it in his 1926 doctoral thesis, the "method of classical analogy" for quantization, and detailed it in his classic text. The word canonical arises from the Hamiltonian approach to classical mechanics, in which a system's dynamics is generated via canonical Poisson brackets, a structure which is only partially preserved in canonical quantization.
This method was further used in the context of quantum field theory by Paul Dirac, in his construction of quantum electrodynamics. In the field theory context, it is also called second quantization, in contrast to the semi-classical first quantization for single particles.
Read more about Canonical Quantization: History, Issues and Limitations, Second Quantization: Field Theory, Mathematical Quantization
Famous quotes containing the word canonical:
“If God bestowed immortality on every man then when he made him, and he made many to whom he never purposed to give his saving grace, what did his Lordship think that God gave any man immortality with purpose only to make him capable of immortal torments? It is a hard saying, and I think cannot piously be believed. I am sure it can never be proved by the canonical Scripture.”
—Thomas Hobbes (15791688)