Characteristic Polynomial - Characteristic Polynomial of A Product of Two Matrices

Characteristic Polynomial of A Product of Two Matrices

If A and B are two square n×n matrices then characteristic polynomials of AB and BA coincide:

More generally, if A is m×n-matrix and B is n×m matrices such that m<n, then AB is m×m and BA is n×n matrix. One has

To prove the first result, recognize that the equation to be proved, as a polynomial in t and in the entries of A and B is a universal polynomial identity. It therefore suffices to check it on an open set of parameter values in the complex numbers. The tuples (A,B,t) where A is an invertible complex n by n matrix, B is any complex n by n matrix, and t is any complex number from an open set in complex space of dimension 2n2 + 1. When A is non-singular our result follows from the fact that AB and BA are similar:

Read more about this topic:  Characteristic Polynomial

Famous quotes containing the word product:

    The seashore is a sort of neutral ground, a most advantageous point from which to contemplate this world. It is even a trivial place. The waves forever rolling to the land are too far-traveled and untamable to be familiar. Creeping along the endless beach amid the sun-squall and the foam, it occurs to us that we, too, are the product of sea-slime.
    Henry David Thoreau (1817–1862)