Strong Chemical Bonds
Typical bond lengths in pm and bond energies in kJ/mol. |
||
Bond | Length (pm) |
Energy (kJ/mol) |
---|---|---|
H — Hydrogen | ||
H–H | 74 | 436 |
H–O | 96 | 366 |
H–F | 92 | 568 |
H–Cl | 127 | 432 |
C — Carbon | ||
C–H | 109 | 413 |
C–C | 154 | 348 |
C–C= | 151 | |
=C–C≡ | 147 | |
=C–C= | 148 | |
C=C | 134 | 614 |
C≡C | 120 | 839 |
C–N | 147 | 308 |
C–O | 143 | 360 |
C–F | 134 | 488 |
C–Cl | 177 | 330 |
N — Nitrogen | ||
N–H | 101 | 391 |
N–N | 145 | 170 |
N≡N | 110 | 945 |
O — Oxygen | ||
O–O | 148 | 145 |
O=O | 121 | 498 |
F, Cl, Br, I — Halogens | ||
F–F | 142 | 158 |
Cl–Cl | 199 | 243 |
Br–H | 141 | 366 |
Br–Br | 228 | 193 |
I–H | 161 | 298 |
I–I | 267 | 151 |
Strong chemical bonds are the intramolecular forces which hold atoms together in molecules. A strong chemical bond is formed from the transfer or sharing of electrons between atomic centers and relies on the electrostatic attraction between the protons in nuclei and the electrons in the orbitals. Although these bonds typically involve the transfer of integer numbers of electrons (this is the bond order, which represents one transferred electron or two shared electrons), some systems can have intermediate numbers of bonds. An example of this is the organic molecule benzene, where the bond order is 1.5 for each carbon atom, meaning that it has 1.5 bonds (shares three electrons) with each one of its two neighbors.
The types of strong bond differ due to the difference in electronegativity of the constituent elements. A large difference in electronegativity leads to more polar (ionic) character in the bond.
Read more about this topic: Chemical Bond
Famous quotes containing the words strong, chemical and/or bonds:
“These are the clouds about the fallen sun,
The majesty that shuts his burning eye:
The weak lay hand on what the strong has done,
Till that be tumbled that was lifted high
And discord follow upon unison....”
—William Butler Yeats (1865–1939)
“If Thought is capable of being classed with Electricity, or Will with chemical affinity, as a mode of motion, it seems necessary to fall at once under the second law of thermodynamics as one of the energies which most easily degrades itself, and, if not carefully guarded, returns bodily to the cheaper form called Heat. Of all possible theories, this is likely to prove the most fatal to Professors of History.”
—Henry Brooks Adams (1838–1918)
“We black women must forgive black men for not protecting us against slavery, racism, white men, our confusion, their doubts. And black men must forgive black women for our own sometimes dubious choices, divided loyalties, and lack of belief in their possibilities. Only when our sons and our daughters know that forgiveness is real, existent, and that those who love them practice it, can they form bonds as men and women that really can save and change our community.”
—Marita Golden, educator, author. Saving Our Sons, p. 188, Doubleday (1995)