Chemical Element - Origin of The Elements

Origin of The Elements

Only about 4% of the total mass of the universe is made of atoms or ions, and thus represented by chemical elements. This fraction is about 15% of the total matter, with the remainder of the matter (85%) being dark matter. The nature of dark matter is unknown, but it is not composed of atoms of chemical elements because it contains no protons, neutrons, or electrons. (The remaining non-matter part of the mass of the universe is composed of the even more mysterious dark energy).

The universe's 94 naturally occurring chemical elements are thought to have been produced by at least four cosmic processes. Most of the hydrogen and helium in the universe was produced primordially in the first few minutes of the Big Bang. Three recurrently occurring later processes are thought to have produced the remaining elements. Stellar nucleosynthesis, an ongoing process, produces all elements from carbon through iron in atomic number, but little lithium, beryllium, or boron. Elements heavier in atomic number than iron, as heavy as uranium and plutonium, are produced by explosive nucleosynthesis in supernovas and other cataclysmic cosmic events. Cosmic ray spallation (fragmentation) of carbon, nitrogen, and oxygen is important to the production of lithium, beryllium and boron.

During the early phases of the Big Bang, nucleosynthesis of hydrogen nuclei resulted in the production of hydrogen-1 (protonium, 1H) and helium-4 (4He), as well as a smaller amount of deuterium (2H) and very minuscule amounts (on the order of 10−10) of lithium and beryllium. Even smaller amounts of boron may have been produced in the Big Bang, since it has been observed in some very old stars, while carbon has not. It is generally agreed that no heavier elements than boron were produced in the Big Bang. As a result, the primordial abundance of atoms (or ions) consisted of roughly 75% 1H, 25% 4He, and 0.01% deuterium, with only tiny traces of lithium, beryllium, and perhaps boron. Subsequent enrichment of galactic halos occurred due to stellar nucleosynthesis and supernova nucleosynthesis. However, the element abundance in intergalactic space can still closely resemble primordial conditions, unless it has been enriched by some means.

On Earth (and elsewhere), trace amounts of various elements continue to be produced from other elements as products of natural transmutation processes. These include some produced by cosmic rays or other nuclear reactions (see cosmogenic and nucleogenic nuclides), and others produced as decay products of long-lived primordial nuclides. For example, trace (but detectable) amounts of carbon-14 (14C) are continually produced in the atmosphere by cosmic rays impacting nitrogen atoms, and argon-40 (40Ar) is continually produced by the decay of primordially occurring but unstable potassium-40 (40K). Also, three primordially occurring but radioactive actinides, thorium, uranium, and plutonium, decay through a series of recurrently produced but unstable radioactive elements such as radium and radon, which are transiently present in any sample of these metals or their ores or compounds. Seven other radioactive elements, technetium, promethium, neptunium, americium, curium, berkelium, and californium, occur only incidentally in natural materials, produced as individual atoms by natural fission of the nuclei of various heavy elements or in other rare nuclear processses.

Human technology has produced various additional elements beyond these first 98, with those through atomic number 118 now known.

Read more about this topic:  Chemical Element

Famous quotes containing the words origin of the, origin of, origin and/or elements:

    In the woods in a winter afternoon one will see as readily the origin of the stained glass window, with which Gothic cathedrals are adorned, in the colors of the western sky seen through the bare and crossing branches of the forest.
    Ralph Waldo Emerson (1803–1882)

    The origin of storms is not in clouds,
    our lightning strikes when the earth rises,
    spillways free authentic power:
    dead John Brown’s body walking from a tunnel
    to break the armored and concluded mind.
    Muriel Rukeyser (1913–1980)

    Though I do not believe that a plant will spring up where no seed has been, I have great faith in a seed,—a, to me, equally mysterious origin for it.
    Henry David Thoreau (1817–1862)

    psychologist
    It is through friendships that teenagers learn to take responsibility, provide support, and give their loyalty to non- family members. It is also in teenage friendships that young people find confidants with whom to share thoughts and feelings that they are not comfortable sharing with their parents. Such sharing becomes one of the elements of true intimacy, which will be established later.
    David Elkind (20th century)