Basis and Dimension
If the dimension of V is n and {e1, …, en} is a basis of V, then the set
is a basis for Cℓ(V, Q). The empty product (k = 0) is defined as the multiplicative identity element. For each value of k there are n choose k basis elements, so the total dimension of the Clifford algebra is
Since V comes equipped with a quadratic form, there is a set of privileged bases for V: the orthogonal ones. An orthogonal basis is one such that
where ⟨·,·⟩ is the symmetric bilinear form associated to Q. The fundamental Clifford identity implies that for an orthogonal basis
This makes manipulation of orthogonal basis vectors quite simple. Given a product of distinct orthogonal basis vectors of V, one can put them into standard order while including an overall sign determined by the number of pairwise swaps needed to do so (i.e. the signature of the ordering permutation).
Read more about this topic: Clifford Algebra
Famous quotes containing the words basis and/or dimension:
“Socialism proposes no adequate substitute for the motive of enlightened selfishness that to-day is at the basis of all human labor and effort, enterprise and new activity.”
—William Howard Taft (18571930)
“God cannot be seen: he is too bright for sight; nor grasped: he is too pure for touch; nor measured: for he is beyond all sense, infinite, measureless, his dimension known to himself alone.”
—Marcus Minucius Felix (2nd or 3rd cen. A.D.)