In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds are cobordant if their disjoint union is the boundary of a manifold one dimension higher. The name comes from the French word bord for boundary. The boundary of an (n + 1)-dimensional manifold is an -dimensional manifold that is closed, i.e., with empty boundary. In general, a closed manifold need not be a boundary: cobordism theory is the study of the difference between all closed manifolds and those that are boundaries. The theory was originally developed for smooth (i.e., differentiable) manifolds, but there are now also versions for piecewise-linear and topological manifolds.
A cobordism is a manifold with boundary whose boundary is partitioned in two, .
Cobordisms are studied both for the equivalence relation that they generate, and as objects in their own right. Cobordism is a much coarser equivalence relation than diffeomorphism or homeomorphism of manifolds, and is significantly easier to study and compute. It is not possible to classify manifolds up to diffeomorphism or homeomorphism in dimensions – because the word problem for groups cannot be solved – but it is possible to classify manifolds up to cobordism. Cobordisms are central objects of study in geometric topology and algebraic topology. In geometric topology, cobordisms are intimately connected with Morse theory, and h-cobordisms are fundamental in the study of high dimensional manifolds, namely surgery theory. In algebraic topology, cobordism theories are fundamental extraordinary cohomology theories, and categories of cobordisms are the domains of topological quantum field theories.
Read more about Cobordism: Surgery Construction, Morse Functions, History, Categorical Aspects, Unoriented Cobordism, Cobordism of Manifolds With Additional Structure, Cobordism As An Extraordinary Cohomology Theory