Complex Analysis - Holomorphic Functions

Holomorphic Functions

Holomorphic functions are complex functions defined on an open subset of the complex plane that are differentiable. Complex differentiability has much stronger consequences than usual (real) differentiability. For instance, holomorphic functions are infinitely differentiable, whereas some real differentiable functions are not. Most elementary functions, including the exponential function, the trigonometric functions, and all polynomial functions, are holomorphic.

See also: analytic function, holomorphic sheaf and vector bundles.

Read more about this topic:  Complex Analysis

Famous quotes containing the word functions:

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)