Implications of Complex Structure
Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds.
For example, the Whitney embedding theorem tells us that every smooth manifold can be embedded as a smooth submanifold of Rn, whereas it is "rare" for a complex manifold to have a holomorphic embedding into Cn. Consider for example any compact connected complex manifold M: any holomorphic function on it is locally constant by Liouville's theorem. Now if we had a holomorphic embedding of M into Cn, then the coordinate functions of Cn would restrict to nonconstant holomorphic functions on M, contradicting compactness, except in the case that M is just a point. Complex manifolds that can be embedded in Cn are called Stein manifolds and form a very special class of manifolds including, for example, smooth complex affine algebraic varieties.
The classification of complex manifolds is much more subtle than that of differentiable manifolds. For example, while in dimensions other than four, a given topological manifold has at most finitely many smooth structures, a topological manifold supporting a complex structure can and often does support uncountably many complex structures. Riemann surfaces, two dimensional manifolds equipped with a complex structure, which are topologically classified by the genus, are an important example of this phenomenon. The set of complex structures on a given orientable surface, modulo biholomorphic equivalence, itself forms a complex algebraic variety called a moduli space, the structure of which remains an area of active research.
Since the transition maps between charts are biholomorphic, complex manifolds are, in particular, smooth and canonically oriented (not just orientable: a biholomorphic map to (a subset of) Cn gives an orientation, as biholomorphic maps are orientation-preserving).
Read more about this topic: Complex Manifold
Famous quotes containing the words implications of, implications, complex and/or structure:
“The power to guess the unseen from the seen, to trace the implications of things, to judge the whole piece by the pattern, the condition of feeling life in general so completely that you are well on your way to knowing any particular corner of itthis cluster of gifts may almost be said to constitute experience.”
—Henry James (18431916)
“The power to guess the unseen from the seen, to trace the implications of things, to judge the whole piece by the pattern, the condition of feeling life in general so completely that you are well on your way to knowing any particular corner of itthis cluster of gifts may almost be said to constitute experience.”
—Henry James (18431916)
“Power is not an institution, and not a structure; neither is it a certain strength we are endowed with; it is the name that one attributes to a complex strategical situation in a particular society.”
—Michel Foucault (19261984)
“For the structure that we raise,
Time is with materials filled;
Our to-days and yesterdays
Are the blocks with which we build.”
—Henry Wadsworth Longfellow (18091882)