L Is A Standard Inner Model of ZFC
L is a standard model, i.e. it is a transitive class and it uses the real element relationship, so it is well-founded. L is an inner model, i.e. it contains all the ordinal numbers of V and it has no "extra" sets beyond those in V, but it might be a proper subclass of V. L is a model of ZFC, which means that it satisfies the following axioms:
- Axiom of regularity: Every non-empty set x contains some element y such that x and y are disjoint sets.
- (L,∈) is a substructure of (V,∈) which is well founded, so L is well founded. In particular, if x∈L, then by the transitivity of L, y∈L. If we use this same y as in V, then it is still disjoint from x because we are using the same element relation and no new sets were added.
- Axiom of extensionality: Two sets are the same if and only if they have the same elements.
- If x and y are in L and they have the same elements in L, then by L's transitivity, they have the same elements (in V). So they are equal (in V and thus in L).
- Axiom of empty set: {} is a set.
- {} = L0 = {y | y∈L0 and y=y} ∈ L1. So {} ∈ L. Since the element relation is the same and no new elements were added, this is the empty set of L.
- Axiom of pairing: If x, y are sets, then {x,y} is a set.
- If x∈L and y∈L, then there is some ordinal α such that x∈Lα and y∈Lα. Then {x,y} = {s | s∈Lα and (s=x or s=y)} ∈ Lα+1. Thus {x,y} ∈ L and it has the same meaning for L as for V.
- Axiom of union: For any set x there is a set y whose elements are precisely the elements of the elements of x.
- If x ∈ Lα, then its elements are in Lα and their elements are also in Lα. So y is a subset of Lα. y = {s | s∈Lα and there exists z∈x such that s∈z} ∈ Lα+1. Thus y ∈ L.
- Axiom of infinity: There exists a set x such that {} is in x and whenever y is in x, so is the union y U {y}.
- From transfinite induction, we get that each ordinal α ∈ Lα+1. In particular, ω ∈ Lω+1 and thus ω ∈ L.
- Axiom of separation: Given any set S and any proposition P(x,z1,...,zn), {x|x∈S and P(x,z1,...,zn)} is a set.
- By induction on subformulas of P, one can show that there is an α such that Lα contains S and z1,...,zn and (P is true in Lα if and only if P is true in L (this is called the "reflection principle")). So {x | x∈S and P(x,z1,...,zn) holds in L} = {x | x∈Lα and x∈S and P(x,z1,...,zn) holds in Lα} ∈ Lα+1. Thus the subset is in L.
- Axiom of replacement: Given any set S and any mapping (formally defined as a proposition P(x,y) where P(x,y) and P(x,z) implies y = z), {y | there exists x∈S such that P(x,y)} is a set.
- Let Q(x,y) be the formula which relativizes P to L, i.e. all quantifiers in P are restricted to L. Q is a much more complex formula than P, but it is still a finite formula; and we can apply replacement in V to Q. So {y | y∈L and there exists x∈S such that P(x,y) holds in L} = {y | there exists x∈S such that Q(x,y)} is a set in V and a subclass of L. Again using the axiom of replacement in V, we can show that there must be an α such that this set is a subset of Lα ∈ Lα+1. Then one can use the axiom of separation in L to finish showing that it is an element of L.
- Axiom of power set: For any set x there exists a set y, such that the elements of y are precisely the subsets of x.
- In general, some subsets of a set in L will not be in L. So the whole power set of a set in L will usually not be in L. What we need here is to show that the intersection of the power set with L is in L. Use replacement in V to show that there is an α such that the intersection is a subset of Lα. Then the intersection is {z | z∈Lα and z is a subset of x} ∈ Lα+1. Thus the required set is in L.
- Axiom of choice: Given a set x of mutually disjoint nonempty sets, there is a set y (a choice set for x) containing exactly one element from each member of x.
- One can show that there is a definable well-ordering of L which definition works the same way in L itself. So one chooses the least element of each member of x to form y using the axioms of union and separation in L.
Notice that the proof that L is a model of ZFC only requires that V be a model of ZF, i.e. we do NOT assume that the axiom of choice holds in V.
Read more about this topic: Constructible Universe
Famous quotes containing the words standard and/or model:
“Where shall we look for standard English but to the words of a standard man?”
—Henry David Thoreau (18171862)
“There are very many characteristics which go into making a model civil servant. Prominent among them are probity, industry, good sense, good habits, good temper, patience, order, courtesy, tact, self-reliance, many deference to superior officers, and many consideration for inferiors.”
—Chester A. Arthur (18291886)