Generalized Continued Fraction
A generalized continued fraction is an expression of the form
where the an (n > 0) are the partial numerators, the bn are the partial denominators, and the leading term b0 is called the integer part of the continued fraction.
To illustrate the use of generalized continued fractions, consider the following example. The sequence of partial denominators of the simple continued fraction of π does not show any obvious pattern:
or
However, several generalized continued fractions for π have a perfectly regular structure, such as:
The first two of these are special cases of the arctangent function with = 4 arctan 1.
Read more about this topic: Continued Fraction
Famous quotes containing the words generalized, continued and/or fraction:
“One is conscious of no brave and noble earnestness in it, of no generalized passion for intellectual and spiritual adventure, of no organized determination to think things out. What is there is a highly self-conscious and insipid correctness, a bloodless respectability submergence of matter in mannerin brief, what is there is the feeble, uninspiring quality of German painting and English music.”
—H.L. (Henry Lewis)
“Calmed by my pleading,
she continued to list your crimes,
found that ten fingers werent enough
and cried for a long time.”
—Hla Stavhana (c. 50 A.D.)
“The visual is sorely undervalued in modern scholarship. Art history has attained only a fraction of the conceptual sophistication of literary criticism.... Drunk with self-love, criticism has hugely overestimated the centrality of language to western culture. It has failed to see the electrifying sign language of images.”
—Camille Paglia (b. 1947)