Continuity Correction

Continuity Correction

In probability theory, if a random variable X has a binomial distribution with parameters n and p, i.e., X is distributed as the number of "successes" in n independent Bernoulli trials with probability p of success on each trial, then

for any x ∈ {0, 1, 2, ... n}. If np and n(1 − p) are large (sometimes taken to mean ≥ 5), then the probability above is fairly well approximated by

where Y is a normally distributed random variable with the same expected value and the same variance as X, i.e., E(Y) = np and var(Y) = np(1 − p). This addition of 1/2 to x is a continuity correction.

A continuity correction can also be applied when other discrete distributions supported on the integers are approximated by the normal distribution. For example, if X has a Poisson distribution with expected value λ then the variance of X is also λ, and

if Y is normally distributed with expectation and variance both λ.

Read more about Continuity Correction:  Applications

Famous quotes containing the words continuity and/or correction:

    Every society consists of men in the process of developing from children into parents. To assure continuity of tradition, society must early prepare for parenthood in its children; and it must take care of the unavoidable remnants of infantility in its adults. This is a large order, especially since a society needs many beings who can follow, a few who can lead, and some who can do both, alternately or in different areas of life.
    Erik H. Erikson (1904–1994)

    There are always those who are willing to surrender local self-government and turn over their affairs to some national authority in exchange for a payment of money out of the Federal Treasury. Whenever they find some abuse needs correction in their neighborhood, instead of applying the remedy themselves they seek to have a tribunal sent on from Washington to discharge their duties for them, regardless of the fact that in accepting such supervision they are bartering away their freedom.
    Calvin Coolidge (1872–1933)