Coordinate System - Transformations Between Coordinate Systems

Transformations Between Coordinate Systems

Because there are often many different possible coordinate systems for describing geometrical figures, it is important to understand how they are related. Such relations are described by coordinate transformations which give formulas for the coordinates in one system in terms of the coordinates in another system. For example, in the plane, if Cartesian coordinates (x, y) and polar coordinates (r, θ) have the same origin, and the polar axis is the positive x axis, then the coordinate transformation from polar to Cartesian coordinates is given by x = r cosθ and y = r sinθ.

Read more about this topic:  Coordinate System

Famous quotes containing the word systems:

    What is most original in a man’s nature is often that which is most desperate. Thus new systems are forced on the world by men who simply cannot bear the pain of living with what is. Creators care nothing for their systems except that they be unique. If Hitler had been born in Nazi Germany he wouldn’t have been content to enjoy the atmosphere.
    Leonard Cohen (b. 1934)