Extinction Patterns
Marine extinction intensity during phanerozoic eon % Millions of years ago K–Pg Tr–J P–Tr Late D O–S The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the "Big Five" extinction events are clickable hyperlinks; see Extinction event for more details. (source and image info)Even though the boundary event was severe, there was significant variability in the rate of extinction between and within different clades. Species that depended on photosynthesis declined or became extinct as atmospheric particles blocked sunlight and reduced the solar energy reaching the Earth's surface. This plant extinction caused a major reshuffling of the dominant plant groups. Photosynthesizing organisms, including phytoplankton and land plants, formed the foundation of the food chain in the late Cretaceous as they do today. Evidence suggests that herbivorous animals died out when the plants they depended on for food became scarce. Consequently, top predators such as Tyrannosaurus rex also perished.
Coccolithophorids and molluscs (including ammonites, rudists, freshwater snails and mussels, and those organisms whose food chain included these shell builders) became extinct or suffered heavy losses. For example, it is thought that ammonites were the principal food of mosasaurs, a group of giant marine reptiles that became extinct at the boundary.
Omnivores, insectivores and carrion-eaters survived the extinction event, perhaps because of the increased availability of their food sources. At the end of the Cretaceous there seems to have been no purely herbivorous or carnivorous mammals. Mammals and birds that survived the extinction fed on insects, worms, and snails, which in turn fed on dead plant and animal matter. Scientists hypothesize that these organisms survived the collapse of plant-based food chains because they fed on detritus (non-living organic material).
In stream communities few animal groups became extinct because stream communities rely less directly on food from living plants and more on detritus that washes in from land, buffering them from extinction. Similar, but more complex patterns have been found in the oceans. Extinction was more severe among animals living in the water column than among animals living on or in the sea floor. Animals in the water column are almost entirely dependent on primary production from living phytoplankton while animals living on or in the ocean floor feed on detritus or can switch to detritus feeding.
The largest air-breathing survivors of the event, crocodyliforms and champsosaurs, were semi-aquatic and had access to detritus. Modern crocodilians can live as scavengers and can survive for months without food, and their young are small, grow slowly, and feed largely on invertebrates and dead organisms or fragments of organisms for their first few years. These characteristics have been linked to crocodilian survival at the end of the Cretaceous.
After the K–Pg extinction event, biodiversity required substantial time to recover, despite the existence of abundant vacant ecological niches.
Read more about this topic: Cretaceous–Paleogene Extinction Event
Famous quotes containing the words extinction and/or patterns:
“Man is an over-complicated organism. If he is doomed to extinction he will die out for want of simplicity.”
—Ezra Pound (18851972)
“Persons grouped around a fire or candle for warmth or light are less able to pursue independent thoughts, or even tasks, than people supplied with electric light. In the same way, the social and educational patterns latent in automation are those of self- employment and artistic autonomy.”
—Marshall McLuhan (19111980)