Cross Product - Cross Product As An Exterior Product

Cross Product As An Exterior Product

The cross product can be viewed in terms of the exterior product. This view allows for a natural geometric interpretation of the cross product. In exterior algebra the exterior product (or wedge product) of two vectors is a bivector. A bivector is an oriented plane element, in much the same way that a vector is an oriented line element. Given two vectors a and b, one can view the bivector a ∧ b as the oriented parallelogram spanned by a and b. The cross product is then obtained by taking the Hodge dual of the bivector a ∧ b, mapping 2-vectors to vectors:

This can be thought of as the oriented multi-dimensional element "perpendicular" to the bivector. Only in three dimensions is the result an oriented line element – a vector – whereas, for example, in 4 dimensions the Hodge dual of a bivector is two-dimensional – another oriented plane element. So, only in three dimensions is the cross product of a and b the vector dual to the bivector a ∧ b: it is perpendicular to the bivector, with orientation dependent on the coordinate system's handedness, and has the same magnitude relative to the unit normal vector as a ∧ b has relative to the unit bivector; precisely the properties described above.

Read more about this topic:  Cross Product

Famous quotes containing the words cross, product and/or exterior:

    The cross of the Legion of Honor has been conferred on me. However, few escape that distinction.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    [The political mind] is a strange mixture of vanity and timidity, of an obsequious attitude at one time and a delusion of grandeur at another time. The political mind is the product of men in public life who have been twice spoiled. They have been spoiled with praise and they have been spoiled with abuse.
    Calvin Coolidge (1872–1933)

    It’s not a pretty face, I grant you. But underneath its flabby exterior is an enormous lack of character.
    Alan Jay Lerner (1918–1986)