Dark Matter - Detection

Detection

If the dark matter within our galaxy is made up of Weakly Interacting Massive Particles (WIMPs), then thousands of WIMPs must pass through every square centimeter of the Earth each second. There are many experiments currently running, or planned, aiming to test this hypothesis by searching for WIMPs. Although WIMPs are a more popular dark matter candidate, there are also experiments searching for other particle candidates such as axions. It is also possible that dark matter consists of very heavy hidden sector particles which only interact with ordinary matter via gravity.

These experiments can be divided into two classes: direct detection experiments, which search for the scattering of dark matter particles off atomic nuclei within a detector; and indirect detection, which look for the products of WIMP annihilations.

An alternative approach to the detection of WIMPs in nature is to produce them in the laboratory. Experiments with the Large Hadron Collider (LHC) may be able to detect WIMPs produced in collisions of the LHC proton beams. Because a WIMP has negligible interactions with matter, it may be detected indirectly as (large amounts of) missing energy and momentum which escape the LHC detectors, provided all the other (non-negligible) collision products are detected. These experiments could show that WIMPs can be created, but it would still require a direct detection experiment to show that they exist in sufficient numbers in the galaxy to account for dark matter.

In April 2012 a group of scientists concluded a study that shows it is unlikely that dark matter is in the form of a halo around celestial objects. This implies that it will not likely be found in a laboratory experiment on Earth.

Read more about this topic:  Dark Matter