History of The Search For Its Composition
What is dark matter? How is it generated? Is it related to supersymmetry? |
Although dark matter had historically been inferred by many astronomical observations, its composition long remained speculative. Early theories of dark matter concentrated on hidden heavy normal objects, such as black holes, neutron stars, faint old white dwarfs, brown dwarfs, as the possible candidates for dark matter, collectively known as MACHOs. Astronomical surveys failed to find enough of these hidden MACHOs. Some hard-to-detect baryonic matter, such as MACHOs and some forms of gas, were additionally speculated to make a contribution to the overall dark matter content, but evidence indicated such would constitute only a small portion.
Furthermore, data from a number of lines of other evidence, including galaxy rotation curves, gravitational lensing, structure formation, and the fraction of baryons in clusters and the cluster abundance combined with independent evidence for the baryon density, indicated that 85–90% of the mass in the universe does not interact with the electromagnetic force. This "nonbaryonic dark matter" is evident through its gravitational effect. Consequently, the most commonly held view was that dark matter is primarily non-baryonic, made of one or more elementary particles other than the usual electrons, protons, neutrons, and known neutrinos. The most commonly proposed particles then became WIMPs (Weakly Interacting Massive Particles, including neutralinos), or axions, or sterile neutrinos, though many other possible candidates have been proposed.
The dark matter component has much more mass than the "visible" component of the universe. Only about 4.6% of the mass-energy of the Universe is ordinary matter. About 23% is thought to be composed of dark matter. The remaining 72% is thought to consist of dark energy, an even stranger component, distributed almost uniformly in space and with energy density non-evolving or slowly evolving with time Determining the nature of this dark matter is one of the most important problems in modern cosmology and particle physics. It has been noted that the names "dark matter" and "dark energy" serve mainly as expressions of human ignorance, much like the marking of early maps with "terra incognita".
Historically, three categories of dark matter candidates had been postulated. The categories cold, warm, and hot refer to how far the particles could move due to random motions in the early universe, before they slowed down due to the expansion of the Universe - this is called the "free streaming length". Primordial density fluctuations smaller than this free-streaming length get washed out as particles move from overdense to underdense regions, while fluctuations larger than the free-streaming length are unaffected; therefore this free-streaming length sets a minimum scale for structure formation.
- Cold dark matter – objects with a free-streaming length much smaller than a protogalaxy
- Warm dark matter – particles with a free-streaming length similar to a protogalaxy.
- Hot dark matter – particles with a free-streaming length much larger than a protogalaxy.
Though a fourth category had been considered early on, called mixed dark matter, it was quickly eliminated (from the 1990s) since the discovery of dark energy.
As an example, Davis et al. wrote in 1985:
Candidate particles can be grouped into three categories on the basis of their effect on the fluctuation spectrum (Bond et al. 1983). If the dark matter is composed of abundant light particles which remain relativistic until shortly before recombination, then it may be termed "hot". The best candidate for hot dark matter is a neutrino ... A second possibility is for the dark matter particles to interact more weakly than neutrinos, to be less abundant, and to have a mass of order 1 keV. Such particles are termed "warm dark matter", because they have lower thermal velocities than massive neutrinos ... there are at present few candidate particles which fit this description. Gravitinos and photinos have been suggested (Pagels and Primack 1982; Bond, Szalay and Turner 1982) ... Any particles which became nonrelativistic very early, and so were able to diffuse a negligible distance, are termed "cold" dark matter (CDM). There are many candidates for CDM including supersymmetric particles.The full calculations are quite technical, but an approximate dividing line is that "warm" dark matter particles became non-relativistic when the universe was approximately 1 year old and 1 millionth of its present size; standard hot big bang theory implies the universe was then in the radiation-dominated era (photons and neutrinos), with a photon temperature 2.7 million K. Standard physical cosmology gives the particle horizon size as 2ct in the radiation-dominated era, thus 2 light-years, and a region of this size would expand to 2 million light years today (if there were no structure formation). The actual free-streaming length is roughly 5 times larger than the above length, since the free-streaming length continues to grow slowly as particle velocities decrease inversely with the scale factor after they become non-relativistic; therefore, in this example the free-streaming length would correspond to 10 million light-years or 3 Mpc today, which is around the size containing on average the mass of a large galaxy.
The above temperature 2.7 million K which gives a typical photon energy of 250 electron-volts, so this sets a typical mass scale for "warm" dark matter: particles much more massive than this, such as GeV - TeV mass WIMPs, would become non-relativistic much earlier than 1 year after the Big Bang, thus have a free-streaming length which is much smaller than a proto-galaxy and effectively negligible (thus cold dark matter). Conversely, much lighter particles (e.g. neutrinos of mass ~ few eV) have a free-streaming length much larger than a proto-galaxy (thus hot dark matter).
Read more about this topic: Dark Matter
Famous quotes containing the words history of the, history of, history, search and/or composition:
“He wrote in prison, not a History of the World, like Raleigh, but an American book which I think will live longer than that. I do not know of such words, uttered under such circumstances, and so copiously withal, in Roman or English or any history.”
—Henry David Thoreau (18171862)
“The history of work has been, in part, the history of the workers body. Production depended on what the body could accomplish with strength and skill. Techniques that improve output have been driven by a general desire to decrease the pain of labor as well as by employers intentions to escape dependency upon that knowledge which only the sentient laboring body could provide.”
—Shoshana Zuboff (b. 1951)
“When the coherence of the parts of a stone, or even that composition of parts which renders it extended; when these familiar objects, I say, are so inexplicable, and contain circumstances so repugnant and contradictory; with what assurance can we decide concerning the origin of worlds, or trace their history from eternity to eternity?”
—David Hume (17111776)
“why
Do our black faces search the empty sky?
Is there something we have forgotten? some precious thing
We have lost, wandering in strange lands?”
—Arna Bontemps (19021973)
“I live in the angle of a leaden wall, into whose composition was poured a little alloy of bell-metal. Often, in the repose of my mid-day, there reaches my ears a confused tintinnabulum from without. It is the noise of my contemporaries.”
—Henry David Thoreau (18171862)