David Hilbert - Hilbert Solves Gordan's Problem

Hilbert Solves Gordan's Problem

Hilbert's first work on invariant functions led him to the demonstration in 1888 of his famous finiteness theorem. Twenty years earlier, Paul Gordan had demonstrated the theorem of the finiteness of generators for binary forms using a complex computational approach. Attempts to generalize his method to functions with more than two variables failed because of the enormous difficulty of the calculations involved. In order to solve what had become known in some circles as Gordan's Problem, Hilbert realized that it was necessary to take a completely different path. As a result, he demonstrated Hilbert's basis theorem: showing the existence of a finite set of generators, for the invariants of quantics in any number of variables, but in an abstract form. That is, while demonstrating the existence of such a set, it was not a constructive proof — it did not display "an object" — but rather, it was an existence proof and relied on use of the Law of Excluded Middle in an infinite extension.

Hilbert sent his results to the Mathematische Annalen. Gordan, the house expert on the theory of invariants for the Mathematische Annalen, was not able to appreciate the revolutionary nature of Hilbert's theorem and rejected the article, criticizing the exposition because it was insufficiently comprehensive. His comment was:

Das ist nicht Mathematik. Das ist Theologie.
(This is not Mathematics. This is Theology.)

Klein, on the other hand, recognized the importance of the work, and guaranteed that it would be published without any alterations. Encouraged by Klein, Hilbert in a second article extended his method, providing estimations on the maximum degree of the minimum set of generators, and he sent it once more to the Annalen. After having read the manuscript, Klein wrote to him, saying:

Without doubt this is the most important work on general algebra that the Annalen has ever published.

Later, after the usefulness of Hilbert's method was universally recognized, Gordan himself would say:

I have convinced myself that even theology has its merits.

For all his successes, the nature of his proof stirred up more trouble than Hilbert could have imagined at the time. Although Kronecker had conceded, Hilbert would later respond to others' similar criticisms that "many different constructions are subsumed under one fundamental idea" — in other words (to quote Reid): "Through a proof of existence, Hilbert had been able to obtain a construction"; "the proof" (i.e. the symbols on the page) was "the object". Not all were convinced. While Kronecker would die soon after, his constructivist philosophy would continue with the young Brouwer and his developing intuitionist "school", much to Hilbert's torment in his later years. Indeed Hilbert would lose his "gifted pupil" Weyl to intuitionism — "Hilbert was disturbed by his former student's fascination with the ideas of Brouwer, which aroused in Hilbert the memory of Kronecker". Brouwer the intuitionist in particular opposed the use of the Law of Excluded Middle over infinite sets (as Hilbert had used it). Hilbert would respond:

Taking the Principle of the Excluded Middle from the mathematician ... is the same as ... prohibiting the boxer the use of his fists.

Read more about this topic:  David Hilbert

Famous quotes containing the word problem:

    Involuntary mental hospitalization is like slavery. Refining the standards for commitment is like prettifying the slave plantations. The problem is not how to improve commitment, but how to abolish it.
    Thomas Szasz (b. 1920)