Number Theory
Hilbert unified the field of algebraic number theory with his 1897 treatise Zahlbericht (literally "report on numbers"). He also resolved a significant number-theory problem formulated by Waring in 1770. As with the finiteness theorem, he used an existence proof that shows there must be solutions for the problem rather than providing a mechanism to produce the answers. He then had little more to publish on the subject; but the emergence of Hilbert modular forms in the dissertation of a student means his name is further attached to a major area.
He made a series of conjectures on class field theory. The concepts were highly influential, and his own contribution lives on in the names of the Hilbert class field and of the Hilbert symbol of local class field theory. Results on them were mostly proved by 1930, after work by Teiji Takagi.
Hilbert did not work in the central areas of analytic number theory, but his name has become known for the Hilbert–Pólya conjecture, for reasons that are anecdotal.
Read more about this topic: David Hilbert
Famous quotes containing the words number and/or theory:
“The Oregon [matter] and the annexation of Texas are now all- important to the security and future peace and prosperity of our union, and I hope there are a sufficient number of pure American democrats to carry into effect the annexation of Texas and [extension of] our laws over Oregon. No temporizing policy or all is lost.”
—Andrew Jackson (17671845)
“We commonly say that the rich man can speak the truth, can afford honesty, can afford independence of opinion and action;and that is the theory of nobility. But it is the rich man in a true sense, that is to say, not the man of large income and large expenditure, but solely the man whose outlay is less than his income and is steadily kept so.”
—Ralph Waldo Emerson (18031882)