Physics
Until 1912, Hilbert was almost exclusively a "pure" mathematician. When planning a visit from Bonn, where he was immersed in studying physics, his fellow mathematician and friend Hermann Minkowski joked he had to spend 10 days in quarantine before being able to visit Hilbert. In fact, Minkowski seems responsible for most of Hilbert's physics investigations prior to 1912, including their joint seminar in the subject in 1905.
In 1912, three years after his friend's death, Hilbert turned his focus to the subject almost exclusively. He arranged to have a "physics tutor" for himself. He started studying kinetic gas theory and moved on to elementary radiation theory and the molecular theory of matter. Even after the war started in 1914, he continued seminars and classes where the works of Albert Einstein and others were followed closely.
By 1907 Einstein had framed the fundamentals of the theory of gravity, but then struggled for nearly 8 years with a confounding problem of putting the theory into final form. By early summer 1915, Hilbert's interest in physics had focused on general relativity, and he invited Einstein to Göttingen to deliver a week of lectures on the subject. Einstein received an enthusiastic reception at Göttingen. Over the summer Einstein learned that Hilbert was also working on the field equations and redoubled his own efforts. During November 1915 Einstein published several papers culminating in "The Field Equations of Gravitation" (see Einstein field equations). Nearly simultaneously David Hilbert published "The Foundations of Physics", an axiomatic derivation of the field equations (see Einstein–Hilbert action). Hilbert fully credited Einstein as the originator of the theory, and no public priority dispute concerning the field equations ever arose between the two men during their lives. See more at priority.
Additionally, Hilbert's work anticipated and assisted several advances in the mathematical formulation of quantum mechanics. His work was a key aspect of Hermann Weyl and John von Neumann's work on the mathematical equivalence of Werner Heisenberg's matrix mechanics and Erwin Schrödinger's wave equation and his namesake Hilbert space plays an important part in quantum theory. In 1926 von Neuman showed that if atomic states were understood as vectors in Hilbert space, then they would correspond with both Schrödinger's wave function theory and Heisenberg's matrices.
Throughout this immersion in physics, Hilbert worked on putting rigor into the mathematics of physics. While highly dependent on higher math, physicists tended to be "sloppy" with it. To a "pure" mathematician like Hilbert, this was both "ugly" and difficult to understand. As he began to understand physics and how physicists were using mathematics, he developed a coherent mathematical theory for what he found, most importantly in the area of integral equations. When his colleague Richard Courant wrote the now classic Methods of Mathematical Physics including some of Hilbert's ideas, he added Hilbert's name as author even though Hilbert had not directly contributed to the writing. Hilbert said "Physics is too hard for physicists", implying that the necessary mathematics was generally beyond them; the Courant-Hilbert book made it easier for them.
Read more about this topic: David Hilbert
Famous quotes containing the word physics:
“... it is as true in morals as in physics that all force is imperishable; therefore the consequences of a human action never cease.”
—Tennessee Claflin (18461923)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“We must be physicists in order ... to be creative since so far codes of values and ideals have been constructed in ignorance of physics or even in contradiction to physics.”
—Friedrich Nietzsche (18441900)