Del - Definition

Definition

In the three-dimensional Cartesian coordinate system R3 with coordinates (x, y, z), del is defined in terms of partial derivative operators as

where are the unit vectors in their respective directions. Though this page chiefly treats del in three dimensions, this definition can be generalized to the n-dimensional Euclidean space Rn. In the Cartesian coordinate system with coordinates (x1, x2, ..., xn), del is:

where is the standard basis in this space.

More compactly, using the Einstein summation notation, del is written as

Del can also be expressed in other coordinate systems, see for example del in cylindrical and spherical coordinates.

Read more about this topic:  Del

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)