Detonation - Theories

Theories

The simplest theory to predict the behavior of detonations in gases is known as Chapman-Jouguet (CJ) theory, developed around the turn of the 20th century. This theory, described by a relatively simple set of algebraic equations, models the detonation as a propagating shock wave accompanied by exothermic heat release. Such a theory confines the chemistry and diffusive transport processes to an infinitely thin zone.

A more complex theory was advanced during World War II independently by Zel'dovich, von Neumann, and W. Doering. This theory, now known as ZND theory, admits finite-rate chemical reactions and thus describes a detonation as an infinitely thin shock wave followed by a zone of exothermic chemical reaction. With a reference frame of a stationary shock, the following flow is subsonic, so that an acoustic reaction zone follows immediately behind the lead front, the Chapman-Jouguet condition. There is also some evidence that the reaction zone is semi-metallic in some explosives.

Both theories describe one-dimensional and steady wave fronts. However, in the 1960s, experiments revealed that gas-phase detonations were most often characterized by unsteady, three-dimensional structures, which can only in an averaged sense be predicted by one-dimensional steady theories. Indeed, such waves are quenched as their structure is destroyed. The Wood-Kirkwood detonation theory can correct for some of these limitations.

Experimental studies have revealed some of the conditions needed for the propagation of such fronts. In confinement, the range of composition of mixes of fuel and oxidant and self-decomposing substances with inerts are slightly below the flammability limits and for spherically expanding fronts well below them. The influence of increasing the concentration of diluent on expanding individual detonation cells has been elegantly demonstrated. Similarly their size grows as the initial pressure falls. Since cell widths must be matched with minimum dimension of containment, any wave overdriven by the initiator will be quenched.

Mathematical modeling has steadily advanced to predicting the complex flow fields behind shocks inducing reactions. To date none has adequately described how structure is formed and sustained behind unconfined waves.

Read more about this topic:  Detonation

Famous quotes containing the word theories:

    Whatever practical people may say, this world is, after all, absolutely governed by ideas, and very often by the wildest and most hypothetical ideas. It is a matter of the very greatest importance that our theories of things that seem a long way apart from our daily lives, should be as far as possible true, and as far as possible removed from error.
    Thomas Henry Huxley (1825–95)

    The egoism which enters into our theories does not affect their sincerity; rather, the more our egoism is satisfied, the more robust is our belief.
    George Eliot [Mary Ann (or Marian)

    Generalisation is necessary to the advancement of knowledge; but particularly is indispensable to the creations of the imagination. In proportion as men know more and think more they look less at individuals and more at classes. They therefore make better theories and worse poems.
    Thomas Babington Macaulay (1800–1859)