Deuterostome

Deuterostome

Deuterostomes (taxonomic term: Deuterostomia; from the Greek: "second mouth") are a superphylum of animals. They are a subtaxon of the Bilateria branch of the subregnum Eumetazoa, and are opposed to the protostomes. Deuterostomes are distinguished by their embryonic development; in deuterostomes, the first opening (the blastopore) becomes the anus, while in protostomes it becomes the mouth. Deuterostomes are also known as enterocoelomates because their coelom develops through enterocoely.

There are four extant phyla of deuterostomes:

  • Phylum Chordata (vertebrates and their kin)
  • Phylum Echinodermata (sea stars, sea urchins, sea cucumbers, etc.)
  • Phylum Hemichordata (acorn worms and possibly graptolites)
  • Phylum Xenoturbellida (2 species of worm-like animals)

Superphylum Deuterostomia was redefined in 1995 based on molecular sequence analyses when the lophophorates were removed from it and combined with other protostome animals to form superphylum Lophotrochozoa. The phylum Chaetognatha (arrow worms) may also belong here. Extinct groups may include the phylum Vetulicolia. Echinodermata, Hemichordata and Xenoturbellida form the clade Ambulacraria.

In both deuterostomes and protostomes, a zygote first develops into a hollow ball of cells, called a blastula. In deuterostomes, the early divisions occur parallel or perpendicular to the polar axis. This is called radial cleavage, and also occurs in certain protostomes, such as the lophophorates. Most deuterostomes display indeterminate cleavage, in which the developmental fate of the cells in the developing embryo are not determined by the identity of the parent cell. Thus if the first four cells are separated, each cell is capable of forming a complete small larva, and if a cell is removed from the blastula the other cells will compensate.

In deuterostomes the mesoderm forms as evaginations of the developed gut that pinch off, forming the coelom. This is called enterocoely.

Both the Hemichordata and Chordata have gill slits, and primitive fossil echinoderms also show signs of gill slits. A hollow nerve cord is found in all chordates, including tunicates (in the larval stage). Some hemichordates also have a tubular nerve cord. In the early embryonic stage it looks like the hollow nerve cord of chordates. Because of the degenerated nervous system of echinoderms, it is not possible to discern much about their ancestors in this matter, but based on different facts it is quite possible that all the present deuterostomes evolved from a common ancestor that had gill slits, a hollow nerve cord and a segmented body. It could have resembled the small group of Cambrian deuterostomes named Vetulicolia.

Read more about Deuterostome:  Formation of Mouth and Anus, Origins