Diamond Principle - Definition

Definition

The diamond principle ◊ says that there exists a ◊-sequence, in other words sets Aα⊆α for α<ω1 such that for any subset A of ω1 the set of α with A∩α = Aα is stationary in ω1.

More generally, for a given cardinal number and a stationary set, the statement ◊S (sometimes written ◊(S) or ◊κ(S)) is the statement that there is a sequence such that

  • each
  • for every is stationary in

The principle ◊ω1 is the same as ◊.

Read more about this topic:  Diamond Principle

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)