Further Notions and Facts
There are some elementary rules:
- If and, then . This is the transitive relation.
- If and, then or .
- If and, then it is NOT always true that (e.g. and but 5 does not divide 6). However, when and, then is true, as is .
If, and gcd, then . This is called Euclid's lemma.
If is a prime number and then or (or both).
A positive divisor of which is different from is called a proper divisor or an aliquot part of . A number that does not evenly divide but leaves a remainder is called an aliquant part of .
An integer whose only proper divisor is 1 is called a prime number. Equivalently, a prime number is a positive integer which has exactly two positive factors: 1 and itself.
Any positive divisor of is a product of prime divisors of raised to some power. This is a consequence of the fundamental theorem of arithmetic.
A number is said to be perfect if it equals the sum of its proper divisors, deficient if the sum of its proper divisors is less than, and abundant if this sum exceeds .
The total number of positive divisors of is a multiplicative function, meaning that when two numbers and are relatively prime, then . For instance, ; the eight divisors of 42 are 1, 2, 3, 6, 7, 14, 21 and 42). However the number of positive divisors is not a totally multiplicative function: if the two numbers and share a common divisor, then it might not be true that . The sum of the positive divisors of is another multiplicative function (e.g. ). Both of these functions are examples of divisor functions.
If the prime factorization of is given by
then the number of positive divisors of is
and each of the divisors has the form
where for each
It can be shown that for any natural the inequality holds.
Also it can be shown that
One interpretation of this result is that a randomly chosen positive integer n has an expected number of divisors of about .
Read more about this topic: Divisor
Famous quotes containing the words notions and/or facts:
“The herd of mankind can hardly be said to think; their notions are almost all adoptive; and, in general, I believe it is better that it should be so; as such common prejudices contribute more to order and quiet, than their own separate reasonings would do, uncultivated and unimproved as they are.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Now, what I want is, Facts. Teach these boys and girls nothing but Facts. Facts alone are wanted in life. Plant nothing else, and root out everything else. You can only form the minds of reasoning animals upon Facts: nothing else will ever be of any service to them. This is the principle on which I bring up my own children, and this is the principle on which I bring up these children. Stick to Facts, sir!”
—Charles Dickens (18121870)