Eight Queens Puzzle - Exercise in Algorithm Design

Exercise in Algorithm Design

Finding all solutions to the eight queens puzzle is a good example of a simple but nontrivial problem. For this reason, it is often used as an example problem for various programming techniques, including nontraditional approaches such as constraint programming, logic programming or genetic algorithms. Most often, it is used as an example of a problem which can be solved with a recursive algorithm, by phrasing the n queens problem inductively in terms of adding a single queen to any solution to the problem of placing n−1 queens on an n-by-n chessboard. The induction bottoms out with the solution to the 'problem' of placing 0 queens on the chessboard, which is the empty chessboard.

This technique is much more efficient than the naïve brute-force search algorithm, which considers all 648 = 248 = 281,474,976,710,656 possible blind placements of eight queens, and then filters these to remove all placements that place two queens either on the same square (leaving only 64!/56! = 178,462,987,637,760 possible placements) or in mutually attacking positions. This very poor algorithm will, among other things, produce the same results over and over again in all the different permutations of the assignments of the eight queens, as well as repeating the same computations over and over again for the different sub-sets of each solution. A better brute-force algorithm places a single queen on each row, leading to only 88 = 224 = 16,777,216 blind placements.

It is possible to do much better than this. One algorithm solves the eight rooks puzzle by generating the permutations of the numbers 1 through 8 (of which there are 8! = 40,320), and uses the elements of each permutation as indices to place a queen on each row. Then it rejects those boards with diagonal attacking positions. The backtracking depth-first search program, a slight improvement on the permutation method, constructs the search tree by considering one row of the board at a time, eliminating most nonsolution board positions at a very early stage in their construction. Because it rejects rook and diagonal attacks even on incomplete boards, it examines only 15,720 possible queen placements. A further improvement which examines only 5,508 possible queen placements is to combine the permutation based method with the early pruning method: the permutations are generated depth-first, and the search space is pruned if the partial permutation produces a diagonal attack. Constraint programming can also be very effective on this problem.

An alternative to exhaustive search is an 'iterative repair' algorithm, which typically starts with all queens on the board, for example with one queen per column. It then counts the number of conflicts (attacks), and uses a heuristic to determine how to improve the placement of the queens. The 'minimum-conflicts' heuristic — moving the piece with the largest number of conflicts to the square in the same column where the number of conflicts is smallest — is particularly effective: it finds a solution to the 1,000,000 queen problem in less than 50 steps on average. This assumes that the initial configuration is 'reasonably good' — if a million queens all start in the same row, it will obviously take at least 999,999 steps to fix it. A 'reasonably good' starting point can for instance be found by putting each queen in its own row and column so that it conflicts with the smallest number of queens already on the board.

Note that 'iterative repair', unlike the 'backtracking' search outlined above, does not guarantee a solution: like all hillclimbing (i.e., greedy) procedures, it may get stuck on a local optimum (in which case the algorithm may be restarted with a different initial configuration). On the other hand, it can solve problem sizes that are several orders of magnitude beyond the scope of a depth-first search.

Read more about this topic:  Eight Queens Puzzle

Famous quotes containing the words exercise and/or design:

    The report reflects incredibly terrible judgments, shockingly sparse concern for human life, instances of officials lacking the courage to exercise the responsibilities of their high office and some very bewildering thought processes.
    Jane Jarrell Smith, U.S. widow of American astronaut Michael J. Smith. As quoted in Newsweek magazine, p. 13 (June 30, 1986)

    To nourish children and raise them against odds is in any time, any place, more valuable than to fix bolts in cars or design nuclear weapons.
    Marilyn French (20th century)