Standard Electrode Potential
To allow prediction of the cell potential, tabulations of standard electrode potential are available. Such tabulations are referenced to the standard hydrogen electrode (SHE). The standard hydrogen electrode undergoes the reaction
- 2 H+(aq) + 2 e– → H2
which is shown as reduction but, in fact, the SHE can act as either the anode or the cathode, depending on the relative oxidation/reduction potential of the other electrode/electrolyte combination. The term standard in SHE requires a supply of hydrogen gas bubbled through the electrolyte at a pressure of 1 atm and an acidic electrolyte with H+ activity equal to 1 (usually assumed to be = 1 mol/liter).
The SHE electrode can be connected to any other electrode by a salt bridge to form a cell. If the second electrode is also at standard conditions, then the measured cell potential is called the standard electrode potential for the electrode. The standard electrode potential for the SHE is zero, by definition. The polarity of the standard electrode potential provides information about the relative reduction potential of the electrode compared to the SHE. If the electrode has a positive potential with respect to the SHE, then that means it is a strongly reducing electrode which forces the SHE to be the anode (an example is Cu in aqueous CuSO4 with a standard electrode potential of 0.337 V). Conversely, if the measured potential is negative, the electrode is more oxidizing than the SHE (such as Zn in ZnSO4 where the standard electrode potential is −0.76 V).
Standard electrode potentials are usually tabulated as reduction potentials. However, the reactions are reversible and the role of a particular electrode in a cell depends on the relative oxidation/reduction potential of both electrodes. The oxidation potential for a particular electrode is just the negative of the reduction potential. A standard cell potential can be determined by looking up the standard electrode potentials for both electrodes (sometimes called half cell potentials). The one that is smaller will be the anode and will undergo oxidation. The cell potential is then calculated as the sum of the reduction potential for the cathode and the oxidation potential for the anode.
- E°cell = E°red(cathode) – E°red(anode) = E°red(cathode) + E°oxi(anode)
For example, the standard electrode potential for a copper electrode is:
- Cell diagram
- Pt(s) | H2(1 atm) | H+(1 M) || Cu2+ (1 M) | Cu(s)
- E°cell = E°red(cathode) – E°red(anode)
At standard temperature, pressure and concentration conditions, the cell's emf (measured by a multimeter) is 0.34 V. By definition, the electrode potential for the SHE is zero. Thus, the Cu is the cathode and the SHE is the anode giving
- Ecell = E°(Cu2+/Cu) – E°(H+/H2)
Or,
- E°(Cu2+/Cu) = 0.34 V
Changes in the stoichiometric coefficients of a balanced cell equation will not change E°red value because the standard electrode potential is an intensive property.
Read more about this topic: Electrochemistry
Famous quotes containing the words standard and/or potential:
“As in political revolutions, so in paradigm choicethere is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.”
—Thomas S. Kuhn (b. 1922)
“Raising a daughter is an extremely political act in this culture. Mothers have been placed in a no-win situation with their daughters: if they teach their daughters simply how to get along in a world that has been shaped by men and male desires, then they betray their daughters potential But, if they do not, they leave their daughters adrift in a hostile world without survival strategies.”
—Elizabeth Debold (20th century)