Elliptic Integral - Complete Elliptic Integral of The Second Kind

The complete elliptic integral of the second kind E is proportional to the circumference of the ellipse :

where a is the semi-major axis, and e is the eccentricity.

E may be defined as

or more compactly in terms of the incomplete integral of the second kind as

It can be expressed as a power series

which is equivalent to

In terms of the Gauss hypergeometric function, the complete elliptic integral of the second kind can be expressed as

The complete elliptic integral of the second kind can be most efficiently computed in terms of the arithmetic-geometric mean and its modification.

Read more about this topic:  Elliptic Integral

Famous quotes containing the words complete, integral and/or kind:

    What I expect from my male friends is that they are polite and clean. What I expect from my female friends is unconditional love, the ability to finish my sentences for me when I am sobbing, a complete and total willingness to pour their hearts out to me, and the ability to tell me why the meat thermometer isn’t supposed to touch the bone.
    Anna Quindlen (20th century)

    Self-centeredness is a natural outgrowth of one of the toddler’s major concerns: What is me and what is mine...? This is why most toddlers are incapable of sharing ... to a toddler, what’s his is what he can get his hands on.... When something is taken away from him, he feels as though a piece of him—an integral piece—is being torn from him.
    Lawrence Balter (20th century)

    I can express no kinder sign of love
    Than this kind kiss.
    William Shakespeare (1564–1616)