Elliptic Integral - Incomplete Elliptic Integral of The Third Kind

The incomplete elliptic integral of the third kind Π is

 \Pi(n ; \varphi \setminus \alpha) = \int_0^\varphi \frac{1}{1-n\sin^2 \theta}
\frac {d\theta}{\sqrt{1-(\sin\theta\sin \alpha)^2}}, or
 \Pi(n ; \varphi \,|\,m) = \int_{0}^{\sin \varphi} \frac{1}{1-nt^2}
\frac{dt}{\sqrt{(1-m t^2)(1-t^2) }}.

The number n is called the characteristic and can take on any value, independently of the other arguments. Note though that the value is infinite, for any m.

A relation with the Jacobian elliptic functions is

The meridian arc length from the equator to latitude is also related to a special case of Π:

Read more about this topic:  Elliptic Integral

Famous quotes containing the words incomplete, integral and/or kind:

    Someone once asked me why women don’t gamble as much as men do, and I gave the common-sensical reply that we don’t have as much money. That was a true but incomplete answer. In fact, women’s total instinct for gambling is satisfied by marriage.
    Gloria Steinem (b. 1934)

    ... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.
    Angelina Grimké (1805–1879)

    I know that the right kind of leader for the Labour Party is a kind of desiccated calculating machine.
    Aneurin Bevan (1897–1960)