Connections To Other Relations
- A partial order is a relation that is reflexive, antisymmetric, and transitive.
- A congruence relation is an equivalence relation whose domain X is also the underlying set for an algebraic structure, and which respects the additional structure. In general, congruence relations play the role of kernels of homomorphisms, and the quotient of a structure by a congruence relation can be formed. In many important cases congruence relations have an alternative representation as substructures of the structure on which they are defined. E.g. the congruence relations on groups correspond to the normal subgroups.
- Equality is both an equivalence relation and a partial order. Equality is also the only relation on a set that is reflexive, symmetric and antisymmetric.
- A strict partial order is irreflexive, transitive, and asymmetric.
- A partial equivalence relation is transitive and symmetric. Transitive and symmetric imply reflexive if and only if for all a∈X, there exists a b∈X such that a~b.
- A reflexive and symmetric relation is a dependency relation, if finite, and a tolerance relation if infinite.
- A preorder is reflexive and transitive.
Read more about this topic: Equivalence Relation
Famous quotes containing the words connections and/or relations:
“The quickness with which all the stuff from childhood can reduce adult siblings to kids again underscores the strong and complex connections between brothers and sisters.... It doesnt seem to matter how much time has elapsed or how far weve traveled. Our brothers and sisters bring us face to face with our former selves and remind us how intricately bound up we are in each others lives.”
—Jane Mersky Leder (20th century)
“In the relations of a weak Government and a rebellious people there comes a time when every act of the authorities exasperates the masses, and every refusal to act excites their contempt.”
—John Reed (18871920)
Main Site Subjects
Related Subjects
Related Phrases
Related Words