Fundamental Theorem of Equivalence Relations
A key result links equivalence relations and partitions:
- An equivalence relation ~ on a set X partitions X.
- Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X.
In both cases, the cells of the partition of X are the equivalence classes of X by ~. Since each element of X belongs to a unique cell of any partition of X, and since each cell of the partition is identical to an equivalence class of X by ~, each element of X belongs to a unique equivalence class of X by ~. Thus there is a natural bijection from the set of all possible equivalence relations on X and the set of all partitions of X.
Read more about this topic: Equivalence Relation
Famous quotes containing the words fundamental, theorem and/or relations:
“Each [side in this war] looked for an easier triumph, and a result less fundamental and astounding. Both read the same Bible, and pray to the same God; and each invokes His aid against the other. It may seem strange that any men should dare to ask a just Gods assistance in wringing their bread from the sweat of other mens faces; but let us judge not that we be not judged.”
—Abraham Lincoln (18091865)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“The principle that human nature, in its psychological aspects, is nothing more than a product of history and given social relations removes all barriers to coercion and manipulation by the powerful.”
—Noam Chomsky (b. 1928)